Advertisement

On a Category of Cotangent Sums Related to the Nyman-Beurling Criterion for the Riemann Hypothesis

  • Nikita Derevyanko
  • Kirill Kovalenko
  • Maksim Zhukovskii
Chapter
  • 69 Downloads

Abstract

The purpose of the present paper is to provide a general overview of a variety of results related to a category of cotangent sums which have been proven to be associated to the so-called Nyman-Beurling criterion for the Riemann Hypothesis. These sums are also related to the Estermann Zeta function.

Keywords

Cotangent sums Riemann zeta function Vasyunin sums Estermann zeta function Riemann Hypothesis Dedekind sums Nyman-Beurling-Báez-Duarte criterio 

References

  1. 1.
    L. Báez-Duatre, M. Balazard, B. Landreau, E. Saias, Etude de l’autocorrelation multiplicative de la fonction ‘partie fractionnaire’. Ramanujan J. 9, 215–240 (2005)MathSciNetCrossRefGoogle Scholar
  2. 2.
    B. Bagchi, On Nyman, Beurling and Baez-Duarte’s Hilbert space reformulation of the Riemann hypothesis. Proc. Indian Acad. Sci. Math. Sci. 116(2), 137–146 (2006)Google Scholar
  3. 3.
    R. Balasubramanian, J. Conrey, D. Heath-Brown, Asymptoticmeansquare of the product of the Riemann zeta-function and a Dirichlet polynomial. J. Reine Angew. Math. 357, 161–181 (1985)MathSciNetzbMATHGoogle Scholar
  4. 4.
    M. Balazard, B. Martin, Sur l’autocorrélation multiplicative de la fonction “partie fractionnaire” et une fonction définie par. J.R. Wilton, arXiv:1305.4395v1Google Scholar
  5. 5.
    S. Bettin, A generalization of Rademacher’s reciprocity law. Acta Arithmetica 159(4), 363–374 (2013)MathSciNetCrossRefGoogle Scholar
  6. 6.
    S. Bettin, On the distribution of a cotangent sum. Int. Math. Res. Not. 2015(21), 11419–11432 (2015)MathSciNetCrossRefGoogle Scholar
  7. 7.
    S. Bettin, J. Conrey, A reciprocity formula for a cotangent sum. Int. Math. Res. Not. 2013(24), 5709–5726 (2013)MathSciNetCrossRefGoogle Scholar
  8. 8.
    S. Bettin, J. Conrey, Period functions and cotangent sums. Algebra Number Theory 7(1), 215–242 (2013)MathSciNetCrossRefGoogle Scholar
  9. 9.
    S. Bettin, J. Conrey, D. Farmer, An optimal choice of Dirichlet polynomials for the Nyman-Beurling criterion. (in memory of Prof. A. A. Karacuba), arXiv:1211.5191Google Scholar
  10. 10.
    R. de la Bretèche, G. Tenenbaum, Series trigonometriques à coefficients arithmetiques. J. Anal. Math. 92, 1–79 (2004)MathSciNetCrossRefGoogle Scholar
  11. 11.
    A. Fokas, A novel approach to the Lindelöf hypothesis. arXiv:1708.06607v4 [math.CA]Google Scholar
  12. 12.
    E. Grosswald, H. Rademacher, Dedekind sums. Mathematical Association of America (1972).  https://doi.org/10.5948/UPO9781614440161
  13. 13.
    M. Ishibashi, The value of the Estermann zeta function at s = 0. Acta Arith. 73(4), 357–361 (1995)MathSciNetCrossRefGoogle Scholar
  14. 14.
    H. Maier, M.Th. Rassias, Asymptotics for moments of certain cotangent sums. Houst. J. Math. 43(1), 207–222 (2017)MathSciNetzbMATHGoogle Scholar
  15. 15.
    H. Maier, M.Th. Rassias, Asymptotics for moments of certain cotangent sums for arbitrary exponents. Houst. J. Math. 43(4), 1235–1249 (2017)MathSciNetzbMATHGoogle Scholar
  16. 16.
    H. Maier, M.Th. Rassias, Estimates of sums related to the Nyman-Beurling criterion for the Riemann Hypothesis. J. Number Theory 188, 96–120 (2018)MathSciNetCrossRefGoogle Scholar
  17. 17.
    H. Maier, M.Th. Rassias, Explicit estimates of sums related to the Nyman-Beurling criterion for the Riemann Hypothesis. J. Funct. Anal. (in press). https://doi.org/10.1016/j.jfa.2018.06.022
  18. 18.
    H. Maier, M.Th. Rassias, Generalizations of a cotangent sum associated to the Estermann zeta function. Commun. Contemp. Math. 18(1), 1550078 (2016)Google Scholar
  19. 19.
    H. Maier, M.Th. Rassias, The maximum of cotangent sums related to Estermann’s zeta function in rational numbers in short intervals. Applicable Anal. Discret. Math. 11, 166–176 (2017)MathSciNetCrossRefGoogle Scholar
  20. 20.
    H. Maier, M.Th. Rassias, The order of magnitude for moments for certain cotangent sums. J. Math. Anal. Appl. 429, 576–590 (2015)MathSciNetCrossRefGoogle Scholar
  21. 21.
    S. Marmi, P. Moussa, J.-C. Yoccoz, The Brjuno functions and their regularity properties. Commun. Math. Phys. 186, 265–293 (1997)MathSciNetCrossRefGoogle Scholar
  22. 22.
    M.Th. Rassias, On a cotangent sum related to zeros of the Estermann zeta function. Appl. Math. Comput. 240, 161–167 (2014)MathSciNetzbMATHGoogle Scholar
  23. 23.
    M.Th. Rassias, Analytic investigation of cotangent sums related to the Riemann zeta function, Doctoral Dissertation, ETH-Zürich (2014)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Nikita Derevyanko
    • 1
  • Kirill Kovalenko
    • 2
  • Maksim Zhukovskii
    • 3
  1. 1.Moscow Institute of Physics and TechnologyDolgoprudnyRussia
  2. 2.National Research University Higher School of EconomicsMoscowRussia
  3. 3.Laboratory of Advanced Combinatorics and Network ApplicationsMoscow Institute of Physics and TechnologyDolgoprudnyRussia

Personalised recommendations