Advertisement

Virtual Reality in Lomonosov Moscow State University Interdisciplinary Research Illustrated by Moscow Bely Gorod Area Historical Reconstruction Example

  • Leonid Borodkin
  • Lemak Stepan
  • Margarita Belousova
  • Anna Kruchinina
  • Maxim MironenkoEmail author
  • Viktor Chertopolokhov
  • Sergey Chernov
Chapter
  • 17 Downloads
Part of the Progress in IS book series (PROIS)

Abstract

This article is devoted to numerical optimization of three-dimensional user interface for virtual reconstruction of 16–18th centuries historical Moscow Centre landscape. Archaeological data was used to develop and visualize multiperiod reconstruction. We integrated the virtual reality solution based on the head mounted display and the motion tracking system. Interface elements should be placed near interactive objects (historic buildings). We need to optimize interface’s three-dimensional design to be operable by different sized and shaped users. Uncommon and unpredictable shapes of historic buildings used as restrictions for interface elements placement add more complexity to the optimization task. We chose the sum of user’s hand transition time from one interface element to another as an optimization functional. User’s hands sizes, interactive object’s position deviations, restrictions for interface elements’ placement was used as perturbations. The expected result of our project is the complex dynamic historical information platform, aimed to visualize a historical landscape in various time sections.

Keywords

Virtual reality Historical reconstruction Interface Optimization GIS Virtual archaeology 

Notes

Acknowledgements

The research is supported by the Russian Foundation for Basic Research grant 18-00-01684 (K) (18-00-01590 and 18-00-01641).

References

  1. Bellman, R. (1957). Functional equations in the theory of dynamic programming. Annals of Mathematics, 65, 215–223.CrossRefGoogle Scholar
  2. Bugrov, D. I., Lebedev, A. V., & Chertopolokhov, V. A. (2014). Estimation of the angular rotation velocity of a body using a tracking system. Moscow University Mechanics Bulletin, 69(1), 25–27.CrossRefGoogle Scholar
  3. Feldman, A. G. (1986). Journal of Motor Behavior, 18, 17–54.CrossRefGoogle Scholar
  4. Fitts, P. M. (1954). The information capacity of the human motor system in controlling the amplitude of movement. Journal of Experimental Psychology, 47(6), 381–391.CrossRefGoogle Scholar
  5. Kruchinina, A. P., & Yakushev, A. G. (2018). A mathematical model of optimal saccadic eye movement by a pair of muscles. Biophysics, 63(2), 241–247.CrossRefGoogle Scholar
  6. Kruchinina, A. P., & Yakushev, A. G. (2019). Statistical study of the single saccade eye movement forms. Journal of Mathematical Sciences, 22(2), 195–207.Google Scholar
  7. Lemak, S. S. (2015). Formation of positional strategies for a differential game in Krasovskii’s method of extremal aiming. Moscow University Mechanics Bulletin, 70(6), 157–160.CrossRefGoogle Scholar
  8. NASA. (July, 1995). Man–systems integration standards, revision B.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Leonid Borodkin
    • 1
  • Lemak Stepan
    • 2
  • Margarita Belousova
    • 2
  • Anna Kruchinina
    • 2
  • Maxim Mironenko
    • 1
    Email author
  • Viktor Chertopolokhov
    • 2
  • Sergey Chernov
    • 3
  1. 1.Faculty of HistoryLomonosov Moscow State UniversityMoscowRussian Federation
  2. 2.Faculty of Mathematics and MechanicsLomonosov Moscow State UniversityMoscowRussian Federation
  3. 3.Institute of Archaeology, Russian Academy of SciencesMoscowRussian Federation

Personalised recommendations