Conclusions and Extensions

  • Sam Alxatib
Part of the Studies in Linguistics and Philosophy book series (SLAP, volume 104)


The findings of the book are summarized given the so-called “only-implicature generalization”. It is shown that, though at first glance the central data appear to falsify the generalization, the account proposed in the book brings them in line with it. The points are extended partially to positive and negative comparatives, and to the modified-numeral constructions at least and at most.


  1. Alxatib, S. (2013). Only and Association with Negative Antonyms. Ph.D. thesis, MIT.Google Scholar
  2. Alxatib, S. (2014a). The comparative as subsethood: How degree-referring restrictors fit it. In L. Crnič & U. Sauerland (Eds.), The art and craft of semantics: A festschrift for Irene Heim (vol. 1). Cambridge: MITWPL.Google Scholar
  3. Alxatib, S. (2014b). FC inferences under only. In J. Iyer & L. Kusmer (Eds.), Proceedings of the 44th meeting of the North East Linguistic Society (pp. 15–28). Amherst: GLSA Publications.Google Scholar
  4. Alxatib, S. (2020). Only and innocent inclusion. Talk delivered at the 94th annual meeting of the Linguistic Society of America.Google Scholar
  5. Bar-Lev, M. E. (2018). Free Choice, Homogeneity, and Innocent Inclusion. Ph.D. thesis, Hebrew University of Jerusalem.Google Scholar
  6. Bar-Lev, M. E., & Danny, F. (2017). Universal free choice and innocent inclusion. In D. Burgdorf, J. Collard, S. Maspong, & B. Stefánsdóttir (Eds.), Semantics and linguistic theory (SALT) (Vol. 27, pp. 95–115).Google Scholar
  7. Bonomi, A., & Casalegno, P. (1993). Only: Association with focus in event semantics. Natural Language Semantics, 2, 1–45.CrossRefGoogle Scholar
  8. Büring, D. (2008). The least at least can do. In C. B. Chang & H. J. Haynie (Eds.), WCCFL 26. Somerville: Cascadilla Press.Google Scholar
  9. Chierchia, G., Fox, D., & Spector, B. (2012). Scalar implicature as a grammatical phenomenon. In C. Maienborn, K. von Heusinger, & P. Portner (Eds.), Handbook of semantics (Vol. 3). Berlin: Mouton de Gruyter.Google Scholar
  10. Fox, D. (2003). Implicature calculation, only, and lumping: Another look at the puzzle of disjunction. Handout of talk presented at Yale University.Google Scholar
  11. Fox, D. (2007a). Free choice and the theory of scalar implicatures. In U. Sauerland & P. Stateva (Eds.), Presupposition and implicature in compositional semantics. Houndmills: Palgrave Macmillan.Google Scholar
  12. Fox, D., & Hackl, M. (2006). The universal density of measurement. Linguistics and Philosophy, 29, 537–586.CrossRefGoogle Scholar
  13. Gajewski, J. (2009). Innocent Exclusion is not contradiction free. Ms. Available at
  14. Gajewski, J., & Sharvit, Y. (2012). In defense of the grammatical approach to local implicatures. Natural Language Semantics, 20, 31–57.CrossRefGoogle Scholar
  15. Groenendijk, J., & Stokhof, M. (1990). Partitioning logical space. Annotated handout for the Second European Summer School in Language, Logic and Computation (ESSLLI 2), Leuven, Aug 1990. Available at
  16. Hackl, M. (2000). Comparative Quantifiers. Ph.D. thesis, MIT.Google Scholar
  17. Hurford, J. R. (1974). Exclusive or inclusive disjunction. Foundations of Language, 11, 409–411.Google Scholar
  18. Kennedy, C. (2015). A “de-Fregean” semantics (and neo-Gricean pragmatics) for modified and unmodified numerals. Semantics and Pragmatics, 8, 1–44.CrossRefGoogle Scholar
  19. Kratzer, A. (2019). Situations in natural language semantics. In E. N. Zalta (Ed.), The stanford encyclopedia of philosophy. Metaphysics Research Lab, Stanford University, spring 2019 edition.Google Scholar
  20. Nussbaum, M. (2015). Subset comparatives as comparative quantifiers. In E. Csipak & H. Zeijlstra (Eds.), Sinn und Bedeutung 19, 445–462.Google Scholar
  21. Sauerland, U. (2004). Scalar implicatures in complex sentences. Linguistics and Philosophy, 27, 367–391.CrossRefGoogle Scholar
  22. Schwarz, B. (2011). Remarks on class-B numeral modifiers. Handout of talk delivered at Göttingen University.Google Scholar
  23. Schwarz, B. (2016). Consistency preservation in Quantity implicature: The case of at least. Semantics and Pragmatics, 9, 1–47.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Sam Alxatib
    • 1
  1. 1.The Graduate CenterCUNYNew YorkUSA

Personalised recommendations