Advertisement

Toxicity Management for Other Sites in Radiation Oncology

  • Cagdas Yavas
  • Melis GultekinEmail author
Chapter
  • 39 Downloads

Abstract

Radiation therapy (RT) is used widely for the treatment of several tumors. The protection of organs at risks (OAR) is crucial, especially to preserve functions and quality of life in cancer survivors. This chapter will outline the pathophysiology of radiation-induced toxicity in breast, bone, skin, testes, ovaries, and extremities; biologic and clinical principles of tolerance of those structures to radiation, and the treatment strategies of both acute and chronic radiation-induced toxicities.

Keywords

Radiation toxicity Skin Extremities Breast Testes Ovaries Treatment 

References

  1. 1.
    Jatoi I, Kaufman M, Petit JY. Atlas of breast surgery. New York: Springer; 2006.Google Scholar
  2. 2.
    Bistoni G, Farhadi J. Anatomy and physiology of the breast. Plast Reconstr Surg. 2015:477–85.Google Scholar
  3. 3.
  4. 4.
    Offersen BV, Boersma LJ, Kirkove C, Hol S, Aznar MC, Sola AB, Kirova YM, et al. ESTRO consensus guideline on target volume delineation for elective radiation therapy of early stage breast cancer, version 1.1. Radiother Oncol. 2016;118(1):205–8.PubMedCrossRefGoogle Scholar
  5. 5.
    Mukesh M, Harris E, Jena R, Evans P, Coles C. Relationship between irradiated breast volume and late normal tissue complications: a systematic review. Radiother Oncol. 2012;104(1):1–10.PubMedCrossRefGoogle Scholar
  6. 6.
    González Sanchis A, Brualla González L, Sánchez Carazo JL, Gordo Partearroyo JC, Esteve Martínez A, Vicedo González A, López Torrecilla JL. Evaluation of acute skin toxicity in breast radiotherapy with a new quantitative approach. Radiother Oncol. 2017;122(1):54–9.PubMedCrossRefGoogle Scholar
  7. 7.
    White J, Joiner MC. Toxicity from radiation in breast cancer. Cancer Treat Res. 2006;128:65–109.PubMedCrossRefGoogle Scholar
  8. 8.
    Podrock D, Kristjanson L. Skin reactions during radiotherapy for breast cancer: the use and impact of topical agents and dressings. Eur J Cancer Care. 1999;8:143–53.CrossRefGoogle Scholar
  9. 9.
    Shaitelman SF, Schlembach PJ, Arzu I, Ballo M, Bloom ES, Buchholz D, Chronowski GM, et al. Acute and short-term toxic effects of conventionally fractionated vs hypofractionated whole-breast irradiation: a randomized clinical trial. JAMA Oncol. 2015;1(7):931–41.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Bartelink H, Horiot JC, Poortmans PM, et al. Impact of a higher radiation dose on local control and survival in breast-conserving therapy of early breast cancer: 10-year results of the randomized boost versus no boost EORTC 22881- 10882 trial. J Clin Oncol. 2007;25:3259–65.PubMedCrossRefGoogle Scholar
  11. 11.
    Yarnold J, Ashton A, Bliss J, Homewood J, Harper C, Hanson J, Haviland J, Bentzen S, Owen R. Fractionation sensitivity and dose response of late adverse effects in the breast after radiotherapy for early breast cancer: long-term results of a randomised trial. Radiother Oncol. 2005;75(1):9–17.PubMedCrossRefGoogle Scholar
  12. 12.
    Polgar C, Fodor J, Major T, et al. Breast-conserving treatment with partial or whole breast irradiation for low-risk invasive breast carcinoma – 5-year results of a randomized trial. Int J Radiat Oncol Biol Phys. 2007;69:694–702.PubMedCrossRefGoogle Scholar
  13. 13.
    Vaidya JS, Joseph DJ, Tobias JS, et al. Targeted intraoperative radiotherapy versus whole breast radiotherapy for breast cancer (TARGIT-A trial): an international, prospective, randomised, non-inferiority phase 3 trial. Lancet. 2010;376:91–102.PubMedCrossRefGoogle Scholar
  14. 14.
    Ribeiro GG, Magee B, Swindell R, Harris M, Banerjee SS. The Christie Hospital breast conservation trial: an update at 8 years from inception. Clin Oncol (R Coll Radiol). 1993;5:278–83.CrossRefGoogle Scholar
  15. 15.
    Kole AJ, Kole L, Moran MS. Acute radiation dermatitis in breast cancer patients: challenges and solutions. Breast Cancer (Dove Med Press). 2017;9:313–23.Google Scholar
  16. 16.
    Koenig TR, Wolff D, Mettler FA, Wagner LK. Skin injuries from fluoroscopically guided procedures: part 1, characteristics of radiation injury. AJR Am J Roentgenol. 2001.Google Scholar
  17. 17.
    Brown KR, Rzucidlo E. Acute and chronic radiation injury. J Vasc Surg. 2011;253(1 Suppl):15S–21S.CrossRefGoogle Scholar
  18. 18.
    Ryan JL. Ionizing radiation: the good, the bad, and the ugly. J Invest Dermatol. 2012;132(3 pt 2):985–93.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Pignol JP, Vu TT, Mitera G, Bosnic S, Verkooijen HM, Truong P. Prospective evaluation of severe skin toxicity and pain during postmastectomy radiation therapy. Int J Radiat Oncol Biol Phys. 2015;91(1):157–64.PubMedCrossRefGoogle Scholar
  20. 20.
    Fisher J, Scott C, Stevens R, et al. Randomized phase III study comparing Best Supportive Care to Biafine as a prophylactic agent for radiation-induced skin toxicity for women undergoing breast irradiation: Radiation Therapy Oncology Group (RTOG) 97-13. Int J Radiat Oncol Biol Phys. 2000;48(5):1307–10.PubMedCrossRefGoogle Scholar
  21. 21.
    Buchholz TA. Radiation therapy for early-stage breast cancer after breast-conserving surgery. N Engl J Med. 2009;360(1):63–70.PubMedCrossRefGoogle Scholar
  22. 22.
    Yi A, Kim HH, Shin HJ, Huh MO, Ahn SD, Seo BK. Radiation-induced complications after breast cancer radiation therapy: a pictorial review of multimodality imaging findings. Korean J Radiol. 2009;10(5):496–507.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Boyages J, Bilous M, Barraclough B, Langlands AO. Fat necrosis of the breast following lumpectomy and radiation therapy for early breast cancer. Radiother Oncol. 1988;13(1):69–74.PubMedCrossRefGoogle Scholar
  24. 24.
    Williams NR, Williams S, Kanapathy M, et al. Radiation-induced fibrosis in breast cancer: a protocol for an observational cross-sectional pilot study for personalised risk estimation and objective assessment. Int J Surg Protoc. 2019;14:9–13.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Delanian S, Porcher R, Rudant J, Lefaix JL. Kinetics of response to long-term treatment combining pentoxifylline and tocopherol in patients with superficial radiation-induced fibrosis. J Clin Oncol. 2005.Google Scholar
  26. 26.
    Haase O, Rodemann HP. Fibrosis and cytokine mechanisms: relevant in hadron therapy? Radiother Oncol. 2004;73(Suppl 2):S144.PubMedCrossRefGoogle Scholar
  27. 27.
    Bentzen SM. Preventing or reducing late side effects of radiation therapy: radiobiology meets molecular pathology. Nat Rev Cancer. 2006;6(9):702.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Pignol JP, Olivotto I, Rakovitch E, Gardner S, Sixel K, Beckham W, Vu TT, Truong P, Ackerman I, Paszat L. A multicenter randomized trial of breast intensity-modulated radiation therapy to reduce acute radiation dermatitis. J Clin Oncol. 2008;26(13):2085.PubMedCrossRefGoogle Scholar
  29. 29.
    Salvo N, Barnes E, van Draanen J, Stacey E, Mitera G, Breen D, Giotis A, Czarnota G, Pang J, De Angelis C. Prophylaxis and management of acute radiation-induced skin reactions: a systematic review of the literature. Curr Oncol. 2010;17(4):94.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Chan RJ, Webster J, Chung B, Marquart L, Ahmed M, Garantziotis S. Prevention and treatment of acute radiation-induced skin reactions: a systematic review and meta-analysis of randomized controlled trials. BMC Cancer. 2014;14:53.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Lewis L, Carson S, Bydder S, Athifa M, Williams AM, Bremner A. Evaluating the effects of aluminum-containing and non-aluminum containing deodorants on axillary skin toxicity during radiation therapy for breast cancer: a 3-armed randomized controlled trial. Int J Radiat Oncol Biol Phys. 2014;90(4):765.PubMedCrossRefGoogle Scholar
  32. 32.
    Lokkevik E, Slovlund E, Reitan J, et al. Skin treatment with bepanthen cream versus no cream during radiotherapy. Acta Onocol. 1996;35(8):1021–6.CrossRefGoogle Scholar
  33. 33.
    Maiche AG, Grohn P, Maki-Hokkonen H. Effect of chamomile cream and almond ointment on acute radiation skin reaction. Acta Oncol. 1991;30(3):395–6.PubMedCrossRefGoogle Scholar
  34. 34.
    Macmillan MS, Wells M, MacBride S, Raab GM, Munro A, MacDougall H. Randomized comparison of dry dressings versus hydrogel in management of radiation-induced moist desquamation. Int J Radiat Oncol Biol Phys. 2007;68(3):864–72. Epub 2007 Mar 23.PubMedCrossRefGoogle Scholar
  35. 35.
    Haruna F, Lipsett A, Marignol L. Management of acute radiation dermatitis in breast cancer patients: a systematic review and meta-analysis. Anticancer Res. 2017;37(10):5343.PubMedGoogle Scholar
  36. 36.
    Heggie S, Bryant GP, Tripcony L, et al. A Phase III study on the efficacy of topical aloe vera gel on irradiated breast tissue. Cancer Nurs. 2002;25:442.PubMedCrossRefGoogle Scholar
  37. 37.
    Richardson J, Smith JE, McIntyre M, et al. Aloe vera for preventing radiation-induced skin reactions: a systematic literature review. Clin Oncol (R Coll Radiol). 2005;17:478.CrossRefGoogle Scholar
  38. 38.
    Hoopfer D, Holloway C, Gabos Z, et al. Three-arm randomized phase III trial: quality aloe and placebo cream versus powder as skin treatment during breast cancer radiation therapy. Clin Breast Cancer. 2015;15:181.PubMedCrossRefGoogle Scholar
  39. 39.
    Rosenthal A, Israilevich R, Moy R. Management of acute radiation dermatitis: a review of the literature and proposal for treatment algorithm. J Am Acad Dermatol. 2019;81(2):558.PubMedCrossRefGoogle Scholar
  40. 40.
    Magnusson M, Höglund P, Johansson K, Jönsson C, Killander F, Malmström P, Weddig A, Kjellén E. Pentoxifylline and vitamin E treatment for prevention of radiation-induced side-effects in women with breast cancer: a phase two, double-blind, placebo-controlled randomised clinical trial (Ptx-5). Eur J Cancer. 2009;45(14):2488.PubMedCrossRefGoogle Scholar
  41. 41.
    Rossi AM, Nehal KS, Lee EH. Radiation-induced breast telangiectasias treated with the pulsed dye laser. J Clin Aesthet Dermatol. 2014;7(12):34.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Kanitakis J. Anatomy, histology and immunohistochemistry of normal human skin. Eur J Dermatol. 2002;12(4):390–401.PubMedGoogle Scholar
  43. 43.
    Montagna W, Kligman AM, Carlisle KS. Atlas of normal human skin. New York: Springer; 1992.CrossRefGoogle Scholar
  44. 44.
    James WD, Berger TG, Elston DM. Andrews’ diseases of the skin: clinical dermatology. 10th ed. Philadelphia: Elsevier Saunders; 2006.Google Scholar
  45. 45.
    Common Terminology Criteria for Adverse Events (CTCAE), Version 5.0, November 2017, National Institutes of Health, National Cancer Institute. Available at: https://ctep.cancer.gov/protocoldevelopment/electronic_applications/docs/CTCAE_v5_Quick_Reference_8.5x11.pdf. Accessed 27 Mar 2018.
  46. 46.
    Pommier P, Gomez F, Sunyach MP, et al. Phase III randomized trial of Calendula officinalis compared with trolamine for the prevention of acute dermatitis during irradiation for breast cancer. J Clin Oncol. 2004;22:1447.PubMedCrossRefGoogle Scholar
  47. 47.
    Ryan JL, Ling M, Williams JP, et al. Curcumin intervention and plasma biomarkers for radiation dermatitis in breast cancer patients. J Invest Dermatol. 2011;131:S90.Google Scholar
  48. 48.
    Bray FN, Simmons BJ, Wolfson AH, Nouri K. Acute and chronic cutaneous reactions to ionizing radiation therapy. Dermatol Ther (Heidelb). 2016;26(2):185–206.CrossRefGoogle Scholar
  49. 49.
    Wei J, Meng L, Hou X, Qu C, Wang B, Xin Y, Jiang X. Radiation-induced skin reactions: mechanism and treatment. Cancer Manag Res. 2019;11:167–77.PubMedCrossRefGoogle Scholar
  50. 50.
    Mendelsohn FA, Divino CM, Reis ED, Kerstein MD. Wound care after radiation therapy. Adv Skin Wound Care. 2002;15(5):216.PubMedCrossRefGoogle Scholar
  51. 51.
    Emami B, Lyman J, Brown A, Coia L, Goitein M, Munzenrider JE, Shank B, Solin LJ, Wesson M. Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys. 1991;21(1):109–22.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Turesson I, Notter G. The predictive value of skin telangiectasia for late radiation effects in different normal tissues. Int J Radiat Oncol Biol Phys. 1986;12:603–9.PubMedCrossRefGoogle Scholar
  53. 53.
    Benedict SH, Yenice KM, Followill D, Galvin JM, Hinson W, Kavanagh B, Keall P. Stereotactic body radiation therapy: the report of AAPM Task Group 101. Med Phys. 2010;37(8):4078–101.PubMedCrossRefGoogle Scholar
  54. 54.
    Hymes SR, Strom EA, Fife C. Radiation dermatitis: clinical presentation, pathophysiology, and treatment. J Am Acad Dermatol. 2006;54(1):28–46.PubMedCrossRefGoogle Scholar
  55. 55.
    Singh M, Alavi A, Wong R, Akita S. Radiodermatitis: a review of our current understanding. Am J Clin Dermatol. 2016;17(3):277–92.PubMedCrossRefGoogle Scholar
  56. 56.
    Morgan K. Radiotherapy-induced skin reactions: prevention and cure. Br J Nurs. 2014;23(16):S24, S26–32.Google Scholar
  57. 57.
    Kim JH, Kolozsvary AJJ, Jenrow KA, Brown S. Mechanisms of radiation-induced skin injury and implications for future clinical trials. Int J Radiat Biol. 2013;89(5):311–8.PubMedCrossRefGoogle Scholar
  58. 58.
    Bentzen SM. Preventing or reducing late side effects of radiation therapy: radiobiology meets molecular pathology. Nat Rev Cancer. 2006;6(9):702–13.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Martin M, Lefaix J-L, Delanian S. TGF-β1 and radiation fibrosis: a master switch and a specific therapeutic target? Int J Radiat Oncol Biol Phys. 2000;47(2):277–90.PubMedCrossRefGoogle Scholar
  60. 60.
    Tibbs MK. Wound healing following radiation therapy: a review. Radiother Oncol. 1997;42(2):99–106.PubMedCrossRefGoogle Scholar
  61. 61.
    Spałek M. Chronic radiation-induced dermatitis: challenges and solutions. Clin Cosmet Investig Dermatol. 2016;9:473–82.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Denham JW, Hauer-Jensen M. The radiotherapeutic injury – a complex “wound”. Radiother Oncol. 2002;63(2):129–45.PubMedCrossRefGoogle Scholar
  63. 63.
    Quarmby S, Kumar P, Kumar S. Radiation-induced normal tissue injury: role of adhesion molecules in leukocyte–endothelial cell interactions. Int J Cancer. 1999;82(3):385–95.PubMedCrossRefGoogle Scholar
  64. 64.
    Keller LMM, Sopka DM, Li T, et al. Five-year results of whole breast intensity modulated radiation therapy for the treatment of early stage breast cancer: the fox chase cancer center experience. Int J Radiat Oncol Biol Phys. 2012;84(4):881–7.PubMedCrossRefGoogle Scholar
  65. 65.
    Mukesh MB, Qian W, Wilkinson JS, et al. Patient reported outcome measures (PROMs) following forward planned field-in field IMRT: results from the Cambridge Breast IMRT trial. Radiother Oncol. 2014;111(2):270–5.PubMedCrossRefGoogle Scholar
  66. 66.
    Roy I, Fortin A, Larochelle M. The impact of skin washing with water and soap during breast irradiation: a randomized study. Radiother Oncol. 2001;58:333–9.PubMedCrossRefGoogle Scholar
  67. 67.
    Westbury C, Hines F, Hawkes E, Ashley S, Brada M. Advice on hair and scalp care during cranial radiotherapy: a prospective randomized trial. Radiother Oncol. 2000;54:109–16.PubMedCrossRefGoogle Scholar
  68. 68.
    Campbell IR, Illingworth MH. Can patients wash during radiotherapy to the breast or chest wall? A randomized controlled trial. Clin Oncol (R Coll Radiol). 1992;4:78–82.CrossRefGoogle Scholar
  69. 69.
    Wong RK, Bensadoun RJ, Boers-Doets CB, Bryce J, Chan A, Epstein JB, Eaby-Sandy B, Lacouture ME. Clinical practice guidelines for the prevention and treatment of acute and late radiation reactions from the MASCC Skin Toxicity Study Group. Support Care Cancer. 2013;21(10):2933–48.PubMedCrossRefGoogle Scholar
  70. 70.
    Théberge V, Harel F, Dagnault A. Use of axillary deodorant and effect on acute skin toxicity during radiotherapy for breast cancer: a prospective randomized noninferiority trial. Int J Rad Oncol Biol Phys. 2009;75(4):1048–52.CrossRefGoogle Scholar
  71. 71.
    Watson LC, Gies D, Thompson E, Thomas B. Randomized control trial: evaluating aluminum-based antiperspirant use, axilla skin toxicity, and reported quality of life in women receiving external beam radiotherapy for treatment of stage 0, I, and II breast cancer. Int J Rad Oncol Biol Phys. 2012;83(1):e28–e34 25.CrossRefGoogle Scholar
  72. 72.
    Baumann BC, Verginadis II, Zeng C, Bell B, Koduri S, Vachani C, MacArthur KM, Solberg TD, Koumenis C, Metz JM. Assessing the validity of clinician advice that patients avoid use of topical agents before daily radiotherapy treatments. JAMA Oncol. 2018;4(12):1742.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Shukla PN, Gairola M, Mohanti BK, Rath GK. Prophylactic beclomethasone spray to the skin during postoperative radiotherapy of carcinoma breast: a prospective randomized study. Indian J Cancer. 2006;43:180–4.PubMedCrossRefGoogle Scholar
  74. 74.
    Miller RC, Schwartz DJ, Sloan JA, Griffin PC, Deming RL, et al. Mometasone furoate effect on acute skin toxicity in breast cancer patients receiving radiotherapy: a phase III double-blind, randomized trial from the North Central Cancer Treatment Group N06C4. Int J Radiat Oncol Biol Phys. 2011;79:1460–6.PubMedCrossRefGoogle Scholar
  75. 75.
    Haruna F, Lipsett A, Marignol L. Topical management of acute radiation dermatitis in breast cancer patients: a systematic review and meta-analysis. Anticancer Res. 2017;37(10):5343.PubMedGoogle Scholar
  76. 76.
    Elliott EA, Wright JR, Swann RS, Nguyen-Tân F, Takita C, Bucci MK, Garden AS, Kim H, Hug EB, Ryu J, Greenberg M, Saxton JP, Ang K, Berk L, Radiation Therapy Oncology Group Trial 99-13. Phase III Trial of an emulsion containing trolamine for the prevention of radiation dermatitis in patients with advanced squamous cell carcinoma of the head and neck: results of Radiation Therapy Oncology Group Trial 99-13. J Clin Oncol. 2006;24(13):2092–7.PubMedCrossRefGoogle Scholar
  77. 77.
    Wells M, Macmillan M, Raab G, MacBride S, Bell N, MacKinnon K, MacDougall H, Samuel L, Munro A. Does aqueous or sucralfate cream affect the severity of erythematous radiation skin reactions? A randomised controlled trial. Radiother Oncol. 2004;73(2):153–62.PubMedCrossRefGoogle Scholar
  78. 78.
    Hemati S, Asnaashari O, Sarvizadeh M, Motlagh BN, Akbari M, Tajvidi M, Gookizadeh A. Topical silver sulfadiazine for the prevention of acute dermatitis during irradiation for breast cancer. Support Care Cancer. 2012;20(8):1613–8.PubMedCrossRefGoogle Scholar
  79. 79.
    Shell JA, Stanutz F, Grimm J. Comparison of moisture vapor permeable (MVP) dressings to conventional dressings for management of radiation skin reactions. Oncol Nurs Forum. 1986;13:11–6.PubMedGoogle Scholar
  80. 80.
    Mak SS, Molassiotis A, Wan WM, Lee IY, Chan ES. The effects of hydrocolloid dressing and gentian violet on radiation-induced moist desquamation wound healing. Cancer Nurs. 2000;23:220–9.PubMedCrossRefGoogle Scholar
  81. 81.
    Macmillan MS, Wells M, MacBride S, Raab GM, Munro A, MacDougall H. Randomized comparison of dry dressings versus hydrogel in management of radiation-induced moist desquamation. Int J Radiat Oncol Biol Phys. 2007;68:864–72.PubMedCrossRefGoogle Scholar
  82. 82.
    Gollins S, Gaffney C, Slade S, Swindell R. RCT on gentian violet versus a hydrogel dressing for radiotherapyinduced moist skin desquamation. J Wound Care. 2008;17:268–270, 272, 274–275.Google Scholar
  83. 83.
    Bernier J, Bonner J, Vermorken JB, Bensadoun RJ, Dummer R, Giralt J, Kornek G, Hartley A, Mesia R, Robert C, Segaert S, Ang KK. Consensus guidelines for the management of radiation dermatitis and coexisting acne-like rash in patients receiving radiotherapy plus EGFR inhibitors for the treatment of squamous cell carcinoma of the head and neck. Ann Oncol. 2008;19(1):142–9.PubMedCrossRefGoogle Scholar
  84. 84.
    Delanian S, Balla-Mekias S, Lefaix JL. Striking regression of chronic radiotherapy damage in a clinical trial of combined pentoxifylline and tocopherol. J Clin Oncol. 1999;17:3283–90.PubMedCrossRefGoogle Scholar
  85. 85.
    Magnusson M, Höglund P, Johansson K, Jönsson C, Killander F, Malmström P, Weddig A, Kjellén E. Pentoxifylline and vitamin E treatment for prevention of radiation-induced side-effects in women with breast cancer: a phase two, double-blind, placebo-controlled randomize magnud clinical trial (Ptx-5). Eur J Cancer. 2009;45(14):2488.PubMedCrossRefGoogle Scholar
  86. 86.
    Gothard L, Stanton A, MacLaren J, et al. Non-randomised phase II trial of hyperbaric oxygen therapy in patients with chronic arm lymphoedema and tissue fibrosis after radiotherapy for early breast cancer. Radiother Oncol. 2004;70:217.PubMedCrossRefGoogle Scholar
  87. 87.
    Rossi AM, Nehal KS, Lee EH. Radiation-induced breast telangiectasias treated with the pulsed dye laser. J Clin Aesthet Dermatol. 2014;7:34.PubMedPubMedCentralGoogle Scholar
  88. 88.
    Santos-Juanes J, Coto-Segura P, Galache Osuna C, et al. Treatment of hyperpigmentation component in chronic radiodermatitis with alexandrite epilation laser. Br J Dermatol. 2009;160:210.PubMedCrossRefGoogle Scholar
  89. 89.
    Clarke B. Normal bone anatomy and physiology. Clin J Am Soc Nephrol. 2008;3(Suppl):S131–9.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Taichman RS. Blood and bone: two tissues whose fates are intertwined to create the hematopoietic stem cell niche. Blood. 2005;105:2631–9.CrossRefGoogle Scholar
  91. 91.
    Gay HA, Barthold HJ, O’Meara E, Bosch WR, El Naqa I, Al-Lozi R, Rosenthal SA, et al. Pelvic normal tissue contouring guidelines for radiation therapy: a radiation therapy oncology group consensus panel atlas. Int J Radiat Oncol Biol Phys. 2012;83(3):e353–62.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Morrish R, Chan E, Silverman S, Myer J Jr, Fu K, Greenspan D. Osteoradionecrosis in patients irradiated for head and neck carcinoma. Cancer. 1980;47:1980–3.CrossRefGoogle Scholar
  93. 93.
    Murray C, Henson J, Daley T, Zimmerman S. Radiation necrosis of the mandible: a lo-year study, Part I: factors influencing the onset of necrosis. Int J Radiat Oncol Biol Phys. 1980;6:543–8.PubMedCrossRefGoogle Scholar
  94. 94.
    Hope R, Goffinet D, Bagshaw M. Carcinoma of the nasopharynx. Cancer. 1976;37:2605–12.CrossRefGoogle Scholar
  95. 95.
    Marks LB, Ten Haken RK, Martel MK. Guest editor’s introduction to QUANTEC: a user’s guide. Int J Radiat Oncol Biol Phys. 2010;76(3 Suppl):S1–2.PubMedCrossRefGoogle Scholar
  96. 96.
    Cooper JS, Fu K, Marks J, Silverman S. Late effects of radiation therapy in the head and neck region. Int J Radiat Oncol Biol Phys. 1995;31(5):1141–64.PubMedCrossRefGoogle Scholar
  97. 97.
    Dijkstra PU, Huisman PM, Roodenburg JL. Criteria for trismus in head and neck oncology. Int J Oral Maxillofac Surg. 2006;35(4):337–42.PubMedCrossRefGoogle Scholar
  98. 98.
    Okoukoni C, Farris M, Hughes RT, McTyre ER, Helis CA, Munley MT, Willey JS. Radiation-induced bone toxicity. Curr Stem Cell Rep. 2017;3:333–41.CrossRefGoogle Scholar
  99. 99.
    Dhakal S, Chen J, McCance S, Rosier R, O’Keefe R, Constine LS. Bone density changes after radiation for extremity sarcomas: exploring the etiology of pathologic fractures. Int J Radiat Oncol Biol Phys. 2011;80(4):1158–63.PubMedCrossRefGoogle Scholar
  100. 100.
    Watsky MA, Carbone LD, An Q, Cheng C, Lovorn EA, Hudson MM, et al. Bone turnover in long-term survivors of childhood acute lymphoblastic leukemia. Pediatr Blood Cancer. 2014;61(8):1451–6.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Edwards BJ, Raisch DW, Shankaran V, McKoy JM, Gradishar W, Bunta AD, et al. Cancer therapy associated bone loss: implications for hip fractures in mid-life women with breast cancer. Clin Cancer Res. 2011;17(3):560–8.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Hopewell JW. Radiation-therapy effects on bone density. Med Pediatr Oncol. 2003;41(3):208–11.PubMedCrossRefGoogle Scholar
  103. 103.
    Gierloff M, Reutemann M, Gülses A, Niehoff P, Wiltfang J, Açil Y. Effects of zoledronate on the radiation-induced collagen breakdown: a prospective randomized clinical trial. Clin Transl Oncol. 2015;17(6):454–61.PubMedCrossRefGoogle Scholar
  104. 104.
    Okoukoni C, Randolph DM, McTyre ER, Kwok A, Weaver AA, Blackstock AW, et al. Early dose-dependent cortical thinning ofthe femoral neck in anal cancer patients treated with pelvic radiation therapy. Bone. 2017;94:84–9.PubMedCrossRefGoogle Scholar
  105. 105.
    Okoukoni C, Lynch SK, McTyre ER, Randolph DM, Weaver AA, Blackstock AW, et al. A cortical thickness and radiation dose mapping approach identifies early thinning of ribs after stereotactic body radiation therapy. Radiother Oncol. 2016;119(3):449–53.PubMedCrossRefGoogle Scholar
  106. 106.
    Green DE, Adler BJ, Chan ME, Rubin CT. Devastation of adult stem cell pools by irradiation precedes collapse of trabecular bone quality and quantity. J Bone Miner Res. 2012;27(4):749–59.PubMedCrossRefGoogle Scholar
  107. 107.
    Cao X, Wu X, Frassica D, Yu B, Pang L, Xian L, et al. Irradiation induces bone injury by damaging bone marrow microenvironment for stem cells. Proc Natl Acad Sci U S A. 2011;108(4):1609–14.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Jacobson AS, Buchbinder D, Hu K, Urken ML. Paradigm shifts in the management of osteoradionecrosis of the mandible. Oral Oncol. 2010;46:795–801.PubMedCrossRefGoogle Scholar
  109. 109.
    Rana T, Schultz MA, Freeman ML, Biswas S. Loss of Nrf2 accelerates ionizing radiation-induced bone loss by upregulating RANKL. Free Radic Biol Med. 2012;53(12):2298–307.PubMedCrossRefGoogle Scholar
  110. 110.
    Wernle JD, Damron TA, Allen MJ, Mann KA. Local irradiation alters bone morphology and increases bone fragility in a mouse model. J Biomech. 2010;43(14):2738–46.PubMedCrossRefGoogle Scholar
  111. 111.
    Oest ME, Damron TA. Focal therapeutic irradiation induces an early transient increase in bone glycation. Radiat Res. 2014;181(4):439–43.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Gong B, Oest ME, Mann KA, Damron TA, Morris MD. Raman spectroscopy demonstrates prolonged alteration of bone chemical composition following extremity localized irradiation. Bone. 2013;57(1):252–8.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Marx RE. Osteoradionecrosis: a new concept of its pathophysiology. J Oral Maxil Surg. 1983;41:283–8.CrossRefGoogle Scholar
  114. 114.
    Bras J, de Jonge HK, van Merkesteyn JP. Osteoradionecrosis of the mandible: pathogenesis. Am J Otolaryngol. 1990;11:244–50.PubMedCrossRefGoogle Scholar
  115. 115.
    Delanian S, Lefaix JL. The radiation-induced fibroatrophic process: therapeutic perspective via the antioxidant pathway. Radiother Oncol. 2004;73:119–31.PubMedCrossRefGoogle Scholar
  116. 116.
    Rivero JA, Shamji O, Kolokythas A. Osteoradionecrosis: a review of pathophysiology, prevention and pharmacologic management using pentoxifylline, α-tocopherol, and clodronate. Oral Surg Oral Med Oral Pathol Oral Radiol. 2017;124(5):464–71.PubMedCrossRefGoogle Scholar
  117. 117.
    Engleman MA, Woloschak G, Small W Jr. Radiation-induced skeletal injury. Cancer Treat Res. 2006;128:155–69.PubMedCrossRefGoogle Scholar
  118. 118.
    Parker RG, Berry HC. Late effects of therapeutic irradiation on the skeleton and bone marrow. Cancer. 1976;37:1162–71.PubMedCrossRefGoogle Scholar
  119. 119.
    Alektiar KM, McKee AB, Jacobs JM, et al. Outcome of primary soft tissue sarcoma of the knee and elbow. Int J Radiat Oncol Biol Phys. 2002;54(1):163–9.PubMedCrossRefGoogle Scholar
  120. 120.
    Yamamoto K, Nagao S, Suzuki K, et al. Pelvic fractures after definitive and postoperative radiotherapy for cervical cancer: a retrospective analysis of risk factors. Gynecol Oncol. 2017;147(3):585–8.PubMedCrossRefGoogle Scholar
  121. 121.
    Small W Jr, Kachnic L. Postradiotherapy pelvic fractures: cause for concern or opportunity for future research? JAMA. 2005;294(20):2635–7.PubMedCrossRefGoogle Scholar
  122. 122.
    Wood J, Bonjean K, Ruetz S, Bellahcène A, Devy L, Foidart JM, Castronovo V, Green JR. Novel antiangiogenic effects of the bisphosphonate compound zoledronic acid. J. Pharmacol. Exp. Ther. 2002;302(3):1055–61.PubMedCrossRefGoogle Scholar
  123. 123.
    Pierce SM, Recht A, Lingos TI, Abner A, et al. Long-term radiation complications following conservative surgery (CS) and radiation therapy (RT) in patients with early stage breast cancer. Int J Radiat Oncol Biol Phys. 1992;23(5):915–23.PubMedCrossRefGoogle Scholar
  124. 124.
    Meric F, Buchholz TA, Mirza NQ, et al. Long-term complications associated with breastconservation surgery and radiotherapy. Ann Surg Oncol. 2002;9(6):543–9.PubMedCrossRefGoogle Scholar
  125. 125.
    Stephans KL, Djemil T, Tendulkar RD, Robinson CG, Reddy CA, Videtic GM. Prediction of chest wall toxicity from lung stereotactic body radiotherapy (SBRT). Int J Radiat Oncol Biol Phys. 2012;82(2):974–80.PubMedCrossRefGoogle Scholar
  126. 126.
    Ross MD, Elliott RL. Thoracic spine compression fracture in a patient with back pain. J Orthop Sports Phys Ther. 2008;38(4):214.PubMedCrossRefGoogle Scholar
  127. 127.
    Lindsay R, Silverman SL, Cooper C, Hanley DA, Barton I, Broy SB, et al. Risk of new vertebral fracture in the year following a fracture. JAMA. 2001;285(3):320–3.PubMedCrossRefGoogle Scholar
  128. 128.
    Lindsay R, Burge RT, Strauss DM. One year outcomes and costs following a vertebral fracture. Osteoporos Int. 2005;16(1):78–85.PubMedCrossRefGoogle Scholar
  129. 129.
    Vanderpuye V, Goldson A. Osteoradionecrosis of the mandible. J Natl Med Assoc. 2000;92:579.PubMedPubMedCentralGoogle Scholar
  130. 130.
    Fan H, Kim SM, Cho YJ, et al. New approach for the treatment of osteoradionecrosis with pentoxifylline and tocopherol. Biomat Res. 2014;18:13.CrossRefGoogle Scholar
  131. 131.
    Marx RE, Ehler WJ, Tayapongsak P, Pierce LW. Relationship of oxygen dose to angiogenesis induction in irradiated tissue. Am J Surg. 1990;160(5):51.CrossRefGoogle Scholar
  132. 132.
    Marx RE, Johnson RP, Kline SN. Prevention of osteoradionecrosis: a randomized prospective clinical trial of hyperbaric oxygen versus penicillin. J Am Dent Assoc. 1985;111(1):49.PubMedCrossRefGoogle Scholar
  133. 133.
    Delanian S, Depondt J, Lefaix JL. Major healing of refractory mandible osteoradionecrosis after treatment combining pentoxifylline and tocopherol: a phase II trial. Head Neck. 2005;27:114–23.PubMedCrossRefGoogle Scholar
  134. 134.
    Delanian S, Chatel C, Porcher R, Depondt J, Lefaix JL. Complete restoration of refractory mandibular osteoradionecrosis by prolonged treatment with a pentoxifylline-tocopherol-clodronate combination (PENTOCLO): a phase II trial. Int J Radiat Oncol Biol Phys. 2011;80(3):832.PubMedCrossRefGoogle Scholar
  135. 135.
    Spadaro JA, Baesl MR, Conta AC, et al. Effects of irradiation on the appositional and longitudinal growth of the Tibia and Fibula of the rat with and without radioprotectant. J Pediatr Orthop. 2003;23:35–40.PubMedGoogle Scholar
  136. 136.
    Forrest CR, O’Donovan DA, Yeung I, et al. Efficacy of radioprotection in the prevention of radiation-induced craniofacial bone growth inhibition. Plast Reconstr Surg. 2002;109(4):1311–23.PubMedCrossRefGoogle Scholar
  137. 137.
    Forro SD, Lowe JB. Anatomy, shoulder and upper limb, arm structure and function. SourceStatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2019.Google Scholar
  138. 138.
    Hyland S, Varacallo M. Anatomy, bony pelvis and lower limb, popliteal region. SourceStatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2019.Google Scholar
  139. 139.
    Rubin P, Andrews JR, Swarm JR, Gump H. Radiation-induced dysplasia of bone. AJR Am J Roentgenol. 1959;82:206–16.Google Scholar
  140. 140.
    Howland WJ, Loeffler RK, Starchman DE, Johnson RB. Postirradiation atrophic changes of bone and related complications. Radiology. 1975;117:677–85.PubMedCrossRefGoogle Scholar
  141. 141.
    Ergun H, Howland WJ. Postradiation atrophy of mature bone. Crit Rev Diagn Imaging. 1980;12:225–43.Google Scholar
  142. 142.
    Dalinka MK, Mazzeo VP. Complications of radiation therapy. Crit Rev Diagn Imaging. 1985;23:235–67.PubMedGoogle Scholar
  143. 143.
    Jentzsch K, Binder H, Cramer H, et al. Leg function after radiotherapy for Ewing’s sarcoma. Cancer. 1991;47:1267–78.CrossRefGoogle Scholar
  144. 144.
    Stinson SF, DeLaney TF, Greenberg J, et al. Acute and long-term effects on limb function of combined modality limb sparing therapy for extremity soft tissue sarcoma. Int J Radiat Oncol Biol Phys. 1991;21:1492–9.Google Scholar
  145. 145.
    Welsh JS, Torre TG, DeWeese TL, O’Reilly S. Radiation myositis. Ann Oncol. 1999;10:1105–8.PubMedCrossRefGoogle Scholar
  146. 146.
    Khan MY. Radiation-induced changes in skeletal muscle. An electron microscopy study. J Neuropathol Exp Neurol. 1974;33:42–57.PubMedCrossRefGoogle Scholar
  147. 147.
    Schwenen MK, Altman KI, Schroder W. Radiation-induced increase in the release of amino acids by isolated perfused skeletal muscle. Int J Radiat Oncol Biol Phys. 1989;55:257–69.CrossRefGoogle Scholar
  148. 148.
    Phillips JL, Benak S, Ross G. Ultrastructural and cellular effects of ionizing radiation. Front Radiat Ther Oncol. 1972;6:21–43.CrossRefGoogle Scholar
  149. 149.
    Willey JS, Long DL, Vanderman KS, Loeser RF. Ionizing radiation causes active degradation and reduces matrix synthesis in articular cartilage. Int J Radiat Biol. 2013;89(4):268–77.PubMedCrossRefGoogle Scholar
  150. 150.
    Damron TA, Horton JA, Pritchard MR, Stringer MT, Margulies BS, Strauss JA, Spadaro JA, Farnum CE. Histomorphometric evidence of growth plate recovery potential after fractionated radiotherapy: an in vivo model. Radiat Res. 2008;170(3):284–91.PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Kwon JW, Huh SJ, Yoon YC, Choi SH, Jung JY, Oh D, Choe BK. Pelvic bone complications after radiation therapy of uterine cervical cancer: evaluation with MRI. Am J Roentgenol. 2008;191(4):987–94.CrossRefGoogle Scholar
  152. 152.
    Long DL, Loeser RF. p38gamma mitogen-activated protein kinase suppresses chondrocyte production of MMP-13 in response to catabolic stimulation. Osteoarthr Cartil. 2010;18(9):1203–10.PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Lindburg AB, Bielby SA, Willey JS, DesJardins DJ, Dean D. Society for Biomaterials 2011 Annual Meeting and Exposition. Effect of X-ray irradiation on porcine and murine cartilage modulus; 2011. p. 84.Google Scholar
  154. 154.
    Rubin D, Schomberg P, Shepard R, et al. Arteritis and brachial plexus neuropathy as delayed complications of radiation therapy. Mayo Clin Proc. 2001;76(8):849–52.PubMedCrossRefGoogle Scholar
  155. 155.
    Hashmonai M, Elami A, Kuten A, Lichtig C, Torem S. Subclavian artery occlusion after radiotherapy for carcinoma of the breast. Cancer. 1988;61:2015–8.PubMedCrossRefGoogle Scholar
  156. 156.
    Budin JA, Casarella WJ, Harisiadis L. Subclavian artery occlusion following radiotherapy for carcinoma of the breast. Radiology. 1976;118:169–73.PubMedCrossRefGoogle Scholar
  157. 157.
    Delanian S, Lefaix JL, Pradat PF. Radiation-induced neuropathy in cancer survivors. Radiother Oncol. 2012;105(3):273–82.PubMedCrossRefGoogle Scholar
  158. 158.
    Dong Y, Ridge JA, Ebersole B, Li T, Lango MN, Churilla TM, Donocoff K, Bauman JR, Galloway TJ. Incidence and outcomes of radiation-induced late cranial neuropathy in 10-year survivors of head and neck cancer. Oral Oncol. 2019;95:59–6.PubMedCrossRefGoogle Scholar
  159. 159.
    Salner AL, Botnick LE, Herzog AG, Goldstein MA, Harris JR, Levene MB, Hellman S. Reversible brachial plexopathy following primary radiation therapy for breast cancer. Cancer Treat Rep. 1981;65(9–10):797.PubMedGoogle Scholar
  160. 160.
    Ram Doo A, Shin YS, Yoo S, Park JK. Radiation-induced neuropathic pain successfully treated with systemic lidocaine administration. J Pain Res. 2018;11:545–8.PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Janovski NA, Paramanandhan TL. Ovarian tumors. Tumors and tumor-like conditions of the ovaries, fallopian tubes and ligaments of the uterus. Major Probl Obstet Gynecol. 1973;4:1–245.PubMedGoogle Scholar
  162. 162.
    Chemaitilly W, Mertens AC, Mitby P, et al. Acute ovarian failure in the childhood cancer survivor study. J Clin Endocrinol Metab. 2006;91:1723–8.PubMedCrossRefGoogle Scholar
  163. 163.
    Orio F, Muscogiuri G, Palomba S, et al. Endocrinopathies after allogeneic and autologous transplantation of hematopoietic stem cells. ScientificWorldJournal. 2014;2014:282147.PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Stillman RJ, Schinfeld JS, Schiff I, et al. Ovarian failure in long-term survivors of childhood malignancy. Am J Obstet Gynecol. 1981;139:62–6.PubMedCrossRefGoogle Scholar
  165. 165.
    Wallace WH, Thomson AB, Kelsey TW. The radiosensitivity of the human oocyte. Hum Reprod. 2003;18:117–21.PubMedCrossRefGoogle Scholar
  166. 166.
    Chambers SK, Chambers JT, Kier R, Peschel RE. Sequelae of lateral ovarian transposition in irradiated cervical cancer patients. Int J Radiat Oncol Biol Phys. 1991;20:1305–8.PubMedCrossRefGoogle Scholar
  167. 167.
    Larsen EC, Muller J, Rechnitzer C, et al. Diminished ovarian reserve in female childhood cancer survivors with regular menstrual cycles and basal FSH <10 IU/l. Hum Reprod. 2003;18:417–22.PubMedCrossRefGoogle Scholar
  168. 168.
    Ash P. The influence of radiation on fertility in man. Br J Radiol. 1980;53:271–8.PubMedCrossRefGoogle Scholar
  169. 169.
    Chambers SK, Chambers JT, Holm C, et al. Sequelae of lateral ovarian transposition in unirradiated cervical cancer patients. Gynecol Oncol. 1990;39:155–9.PubMedCrossRefGoogle Scholar
  170. 170.
    Wallace WH, Thomson AB, Saran F, Kelsey TW. Predicting age of ovarian failure after radiation to a field that includes the ovaries. Int J Radiat Oncol Biol Phys. 2005;62:738–44.PubMedCrossRefGoogle Scholar
  171. 171.
    Lambertini M, Del Mastro L, Pescio MC, et al. Cancer and fertility preservation: international recommendations from an expert meeting. BMC Med. 2016;14:1.PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Du Z, Qu H. The relationship between ovarian function and ovarian limited dose in radiotherapy postoperation of ovarian transposition in young patients with cervical cancer. Cancer Med. 2017;6:508–15.PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Yin L, Lu S, Zhu J, et al. Ovarian transposition before radiotherapy in cervical cancer patients: functional outcome and the adequate dose constraint. Radiat Oncol. 2019;14:100.PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Gao W, Liang JX, Yan Q. Exposure to radiation therapy is associated with female reproductive health among childhood cancer survivors: a meta-analysis study. J Assist Reprod Genet. 2015;32:1179–86.PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    De Vos M, Devroey P, Fauser BC. Primary ovarian insufficiency. Lancet. 2010;376:911–21.PubMedCrossRefGoogle Scholar
  176. 176.
    Lushbaugh CC, Casarett GW. The effects of gonadal irradiation in clinical radiation therapy: a review. Cancer. 1976;37:1111–25.PubMedCrossRefGoogle Scholar
  177. 177.
    Hamre MR, Robison LL, Nesbit ME, et al. Effects of radiation on ovarian function in long-term survivors of childhood acute lymphoblastic leukemia: a report from the Childrens Cancer Study Group. J Clin Oncol. 1987;5:1759–65.PubMedCrossRefGoogle Scholar
  178. 178.
    Bisharah M, Tulandi T. Laparoscopic preservation of ovarian function: an underused procedure. Am J Obstet Gynecol. 2003;188:367–70.PubMedCrossRefGoogle Scholar
  179. 179.
    Morice P, Castaigne D, Haie-Meder C, et al. Laparoscopic ovarian transposition for pelvic malignancies: indications and functional outcomes. Fertil Steril. 1998;70:956–60.PubMedCrossRefGoogle Scholar
  180. 180.
    Donnez J, Godin PA, Qu J, Nisolle M. Gonadal cryopreservation in the young patient with gynaecological malignancy. Curr Opin Obstet Gynecol. 2000;12:1–9.PubMedCrossRefGoogle Scholar
  181. 181.
    Newton H. The cryopreservation of ovarian tissue as a strategy for preserving the fertility of cancer patients. Hum Reprod Update. 1998;4:237–47.PubMedCrossRefGoogle Scholar
  182. 182.
    Rodriguez-Wallberg KA, Oktay K. Fertility preservation during cancer treatment: clinical guidelines. Cancer Manag Res. 2014;6:105–17.PubMedPubMedCentralGoogle Scholar
  183. 183.
    Sklar CA, Antal Z, Chemaitilly W, et al. Hypothalamic-pituitary and growth disorders in survivors of childhood cancer: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2018;103:2761–84.CrossRefGoogle Scholar
  184. 184.
    Izard MA. Leydig cell function and radiation: a review of the literature. Radiother Oncol. 1995;34:1–8.PubMedCrossRefGoogle Scholar
  185. 185.
    Thomson AB, Critchley HO, Kelnar CJ, Wallace WH. Late reproductive sequelae following treatment of childhood cancer and options for fertility preservation. Best Pract Res Clin Endocrinol Metab. 2002;16:311–34.PubMedCrossRefGoogle Scholar
  186. 186.
    Biedka M, Kuzba-Kryszak T, Nowikiewicz T, Zyromska A. Fertility impairment in radiotherapy. Contemp Oncol (Pozn). 2016;20:199–204.Google Scholar
  187. 187.
    Shalet SM. Effect of irradiation treatment on gonadal function in men treated for germ cell cancer. Eur Urol. 1993;23:148–51; discussion 152.PubMedCrossRefGoogle Scholar
  188. 188.
    Rowley MJ, Leach DR, Warner GA, Heller CG. Effect of graded doses of ionizing radiation on the human testis. Radiat Res. 1974;59:665–78.PubMedCrossRefGoogle Scholar
  189. 189.
    Mitchell RT, Saunders PTK, Sharpe RM, et al. Male fertility and strategies for fertility preservation following childhood cancer treatment. Endocr Dev. 2009;15:101–34.PubMedCrossRefGoogle Scholar
  190. 190.
    Heller GC. Effects on the germinal epithelium. In: Langham WH, editor. Radiobiological factors in manned space flight. eNPW, DC: National Academy of Sciences, National Research Council; 1967. p. 124–33.Google Scholar
  191. 191.
    Sklar CA, Robison LL, Nesbit ME, et al. Effects of radiation on testicular function in long-term survivors of childhood acute lymphoblastic leukemia: a report from the Children Cancer Study Group. J Clin Oncol. 1990;8:1981–7.PubMedCrossRefGoogle Scholar
  192. 192.
    Brauner R, Czernichow P, Rappaport R. Greater susceptibility to hypothalamopituitary irradiation in younger children with acute lymphoblastic leukemia. J Pediatr. 1986;108:332.PubMedCrossRefGoogle Scholar
  193. 193.
    Sukhu T, Ross S, Coward RM. Urological survivorship issues among adolescent boys and young men who are cancer survivors. Sex Med Rev. 2018;6:396–409.PubMedCrossRefGoogle Scholar
  194. 194.
    Skinner R, Mulder RL, Kremer LC, et al. Recommendations for gonadotoxicity surveillance in male childhood, adolescent, and young adult cancer survivors: a report from the International Late Effects of Childhood Cancer Guideline Harmonization Group in collaboration with the PanCareSurFup Consortium. Lancet Oncol. 2017;18:e75–90.PubMedCrossRefGoogle Scholar
  195. 195.
    Shalet SM, Horner A, Ahmed SR, Morris-Jones PH. Leydig cell damage after testicular irradiation for lymphoblastic leukaemia. Med Pediatr Oncol. 1985;13:65–8.PubMedCrossRefGoogle Scholar
  196. 196.
    Skaznik-Wikiel ME, Gilbert SB, Meacham RB, Kondapalli LA. Fertility preservation options for men and women with cancer. Rev Urol. 2015;17:211–9.PubMedPubMedCentralGoogle Scholar
  197. 197.
    Wei C, Crowne EC. Recent advances in the understanding and management of delayed puberty. Arch Dis Child. 2016;101:481–8.PubMedCrossRefGoogle Scholar
  198. 198.
    Agarwal A. Semen banking in patients with cancer: 20-year experience. Int J Androl. 2000;23(Suppl 2):16–9.PubMedCrossRefGoogle Scholar
  199. 199.
    Bath LE, Wallace WH, Critchley HO. Late effects of the treatment of childhood cancer on the female reproductive system and the potential for fertility preservation. BJOG. 2002;109:107–14.PubMedCrossRefGoogle Scholar
  200. 200.
    Damani MN, Master V, Meng MV, et al. Postchemotherapy ejaculatory azoospermia: fatherhood with sperm from testis tissue with intracytoplasmic sperm injection. J Clin Oncol. 2002;20:930–6.PubMedCrossRefGoogle Scholar
  201. 201.
    Wei C, Crowne E. The impact of childhood cancer and its treatment on puberty and subsequent hypothalamic pituitary and gonadal function, in both boys and girls. Best Pract Res Clin Endocrinol Metab. 2019;33:101291.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Selcuk University, Faculty of Medicine, Department of Radiation OncologyKonyaTurkey
  2. 2.Hacettepe University, Faculty of Medicine, Department of Radiation OncologyAnkaraTurkey

Personalised recommendations