Assessing the Versatility of Molecular Modelling as a Strategy for Predicting Gas Adsorption Properties of Chalcogels

  • Iréné Berenger Amiehe Essomba
  • Carlo Massobrio
  • Mauro Boero
  • Guido OriEmail author
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 296)


Modelling gas adsorption of porous materials is nowadays an undeniable necessary in order to complement experiment findings with the purpose to enrich our fundamental understanding of adsorption mechanisms as well as develop better performing materials for gas mixture separation. In this contribution, we explore the possibility to use first-principles molecular dynamics (FPMD) and grand canonical Monte Carlo (GCMC) simulations to target the gas adsorption of disordered nanoporous chalcogenides (i.e. chalcogels). This computational scheme allows us to take advantage of the ability of FPMD to accurately describe the structure and bonding of the disordered nature of chalcogels as well as the potential of GCMC to model the adsorption mechanisms of porous networks. We assess the versatility of such scheme by evaluating the role of pore size, chemical stoichiometry and composition for multiple chalcogenide-based systems on nitrogen adsorption isotherms.



We acknowledge the Pôle HPC and Equipex quip@Meso at the University of Strasbourg and the Grand Equipement National de Calcul Intensif (GENCI) under allocation DARI-A0060807670. G.O. acknowledges the Seed Money program of Eucor—The European Campus (project MEDIA) for financial support.


  1. 1.
    The Strategic Energy Technology Plan 2017,
  2. 2.
    C.H. Lau, S. Liu, D.R. Paul, J. Xia, Y.-C. Jean, H. Chen, K. Shao, T.-S. Chung, Adv. Energy Mater. 1, 634–642 (2011)CrossRefGoogle Scholar
  3. 3.
    B. Coasne, A. Galarneau, R.J.M. Pellenq, F. Di Renzo, Chem. Soc. Rev. 42, 4141–4171 (2013)CrossRefGoogle Scholar
  4. 4.
    B. Coasne, P. Ugliengo, Langmuir 28, 11131–11141 (2012)CrossRefGoogle Scholar
  5. 5.
    B. Coasne, New J. Chem. 40, 4078 (2016)CrossRefGoogle Scholar
  6. 6.
    X. Xu, C. Song, J.M. Andresen, B.G. Miller, A.W. Scaroni, Energy Fuels 16, 1463–1469 (2002)CrossRefGoogle Scholar
  7. 7.
    N.R. Stuckert, R.T. Yang, Environ. Sci. Technol. 45, 10257–10264 (2011)CrossRefGoogle Scholar
  8. 8.
    G. Li, P. Xiao, P. Webley, J. Zhang, R. Singh, M. Marshall, Adsorption 14, 415–422 (2008)CrossRefGoogle Scholar
  9. 9.
    J. Merel, M. Clausse F. Meunier, Ind. Eng. Chem. Res. 47, 209–215 (2008)CrossRefGoogle Scholar
  10. 10.
    N. Du, H.B. Park, M.M. Dal-Cin, M.D. Guiver, Energy Environ. Sci. 5, 7306–7322 (2012)CrossRefGoogle Scholar
  11. 11.
    J. Lee, J. Kim, T. Hyeon, Adv. Mater. 18, 2073–2094 (2006)CrossRefGoogle Scholar
  12. 12.
    P. Billemont, B. Coasne, G. De Weireld, Langmuir 29, 3328–3338 (2013)CrossRefGoogle Scholar
  13. 13.
    G.P. Hao, Z.Y. Jin, Q. Sun, X.Q. Zhang, J.-T. Zhang, A.H. Lu, Energy Environ. Sci. 6, 3740–3747 (2013)CrossRefGoogle Scholar
  14. 14.
    J.-R. Li, R.J. Kuppler, H.-C. Zhou, Chem. Soc. Rev. 38, 1477–1504 (2009)CrossRefGoogle Scholar
  15. 15.
    C.E. Wilmer, O.K. Farha, Y.-S. Bae, J.T. Hupp, R.Q. Snurr, Energy Environ. Sci. 5, 9849–9856 (2012)CrossRefGoogle Scholar
  16. 16.
    V. Stanić, A.C. Pierre, T.H. Etsell, J. Am. Ceram. Soc. 83, 1790–1796 (2000)CrossRefGoogle Scholar
  17. 17.
    K.K. Kalebaila, D.G. Georgiev, S.L. Brock, J. Non-Cryst, Solids 352, 232–240 (2006)Google Scholar
  18. 18.
    G.A. Armatas, M.G. Kanatzidis, Nat. Mater. 8, 222–271 (2009)CrossRefGoogle Scholar
  19. 19.
    B.J. Riley, J. Chun, W. Um, W.C. Lepry, J. Matyas, M.J. Olszta, X. Li, K. Polychronopoulou, M.G. Kanatzidis, Environ. Sci. Technol. 47, 7540–7547 (2013)CrossRefGoogle Scholar
  20. 20.
    Q. Lin, X. Bu, C. Mao, X. Zhao, K. Sasan, P. Feng, J. Am. Chem. Soc. 137, 6184–6187 (2015)CrossRefGoogle Scholar
  21. 21.
    H. Yang, M. Luo, X. Chen, X. Zhao, J. Lin, D. Hu, D. Li, X. Bu, P. Feng, T. Wu, Inorg. Chem. 56, 14999–15005 (2017)CrossRefGoogle Scholar
  22. 22.
    R.G. Parr, R.G. Pearson, J. Am. Chem. Soc. 105, 7512–7516 (1983)CrossRefGoogle Scholar
  23. 23.
    M.G. Kanatzidis, Adv. Mater. 19, 1165–1181 (2007)CrossRefGoogle Scholar
  24. 24.
    M. Shafai-Fallah, A. Rothenberger, A.P. Katsoulidis, J. He, C.D. Malliakas, M.G. Kanatzidis, Adv. Mater. 23, 4857–4860 (2011)CrossRefGoogle Scholar
  25. 25.
    E. Ahmed, A. Rothemberger, J. Mater. Chem. A 3, 7786–7792 (2015)CrossRefGoogle Scholar
  26. 26.
    K.S. Subrahmanyam, C.D. Malliakas, D. Sarma, G.S. Armatas, J. Wu, M.G. Kanatzidis, J. Am. Chem. Soc. 137, 13943–13948 (2015)CrossRefGoogle Scholar
  27. 27.
    B.J. Riley, D.A. Pierce, W.C. Lepry, J.O. Kroll, J. Chun, K.S. Subrahmanyam, M.G. Kanatzidis, F.K. Alblouwy, A. Bulbule, E.M. Sabolsky, Ind. Eng. Chem. Res. 54, 11259–11267 (2015)CrossRefGoogle Scholar
  28. 28.
    S. Murugesan, P. Kearns, K.J. Stevenson, Langmuir 28, 5513–5517 (2012)CrossRefGoogle Scholar
  29. 29.
    G. Leyral, M. Ribes, L. Courthéoux, D. Uzio, A. Pradel, Eur. J. Inorg. Chem. 31, 4967–4971 (2012)CrossRefGoogle Scholar
  30. 30.
    G. Ori, C. Massobrio, A. Bouzid, M. Boero, B. Coasne, Phys. Rev. B 90, 045423 (2014)CrossRefGoogle Scholar
  31. 31.
    G. Ori, C. Massobrio, A. Pradel, M. Ribes, B. Coasne, Phys. Chem. Chem. Phys. 18, 13449–13458 (2016)CrossRefGoogle Scholar
  32. 32.
    S. Brunauer, P.H. Emmett, E. Teller, J. Am. Chem. Soc. 60, 309–319 (1938)CrossRefGoogle Scholar
  33. 33.
    A. Galarneau, H. Cambon, F. Di Renzo, F. Fajula, Langmuir 17, 8328–8335 (2001)CrossRefGoogle Scholar
  34. 34.
    R. Car, M. Parrinello, For this contribution as FPMD simulation method we adopted the Car-Parrinello approach. Phys. Rev. Lett. 55, 2471 (1985). Using the CPMD code [see, copyright IBM Corp. 1990–2013, copyright MPI für Festkörperforschung Stuttgart 1997–2001.]Google Scholar
  35. 35.
    G. Ori, A. Bouzid, E. Martin, C. Massobrio, S. Le Roux, M. Boero, Solid State Sci. 95, 105925 (2019)CrossRefGoogle Scholar
  36. 36.
    J.-Y. Raty, M. Schumacher, P. Golub, V.L. Deringer, C. Gatti, M. Wuttig, Adv. Mater. 31, 1806280 (2019)CrossRefGoogle Scholar
  37. 37.
    A.D. Becke, Phys. Rev. A 38, 3098 (1988)CrossRefGoogle Scholar
  38. 38.
    C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988)CrossRefGoogle Scholar
  39. 39.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)CrossRefGoogle Scholar
  40. 40.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 78, 1396 (1997)CrossRefGoogle Scholar
  41. 41.
    A. Bouzid, C. Massobrio, M. Boero, G. Ori, K. Sykina, E. Furet, Phys. Rev. B 92, 134208 (2015)CrossRefGoogle Scholar
  42. 42.
    A. Bouzid, S. Le Roux, G. Ori, M. Boero, C. Massobrio, J. Chem. Phys. 143, 034504 (2015)CrossRefGoogle Scholar
  43. 43.
    A. Bouzid, S. Le Roux, G. Ori, C. Tugene, M. Boero, C. Massobrio, in Molecular Dynamics Simulations of Disordered Materials, vol. 12 (Springer Series in Materials Science, Cham, 2015), pp. 313–344Google Scholar
  44. 44.
    S. Le Roux, A. Bouzid, K.Y. Kim, S. Han, A. Zeidler, P.S. Salmon, C. Massobrio, Chem. Phys. 145, 084502 (2016)Google Scholar
  45. 45.
    E. Lampin, A. Bouzid, G. Ori, M. Boero, C. Massobrio, J. Chem. Phys. 147, 044504 (2017)CrossRefGoogle Scholar
  46. 46.
    C. Massobrio, E. Martin, Z. Chaker, M. Boero, A. Bouzid, G. Ori, Front. Mater. 5, 1–5 (2018)CrossRefGoogle Scholar
  47. 47.
    A.K. Rappé, W.A. Goddard III, J. Phys. Chem. 95, 3358–3363 (1991)CrossRefGoogle Scholar
  48. 48.
    P. Schwerdtfeger, J.K. Nagle, Mol. Phys. 117, 9–12 (2019)CrossRefGoogle Scholar
  49. 49.
    L. Pauling, The Nature of the Chemical Bond, th edn. (Cornell University Press, Ithaca, 1960)Google Scholar
  50. 50.
    C.E. Wilmer, K.C. Kim, R.Q. Snurr, J. Phys. Chem. Lett. 3, 2506 (2012)CrossRefGoogle Scholar
  51. 51.
    R.F.W. Bader, Atoms in Molecules: A Quantum Theory (Oxford University Press, New York, 1990)Google Scholar
  52. 52.
    C. Gatti, P. Macchi, Modern Charge-Density Analysis (Springer, Dordrecht, 2012)CrossRefGoogle Scholar
  53. 53.
    P.-O. L’owdin, J. Chem. Phys. 18, 365 (1950)Google Scholar
  54. 54.
    R.S. Mulliken, J. Chem. Phys. 1955, 23 (1833)Google Scholar
  55. 55.
    S.R. Cox, D.E. Williams, J. Comput. Chem. 2, 304 (1981)CrossRefGoogle Scholar
  56. 56.
    J.J. Potoff, J.I. Siepmann, AIChE J. 47, 1676–1682 (2001)CrossRefGoogle Scholar
  57. 57.
    S.L. Mayo, B.D. Olafson, W.A. Goddard, J. Phys. Chem. 94, 8897 (1990)CrossRefGoogle Scholar
  58. 58.
    Z. Chaker, A. Bouzid, B. Coasne, C. Massobrio, M. Boero, G. Ori, J. Non-Cryst, Solids 498, 288–293 (2018)Google Scholar
  59. 59.
    S. Grimme, J. Compt. Chem. 27, 1787–1799 (2006)CrossRefGoogle Scholar
  60. 60.
    L.J. Karssemejier, G.A. Wijs, H.M. Cuppen, Phys. Chem. Chem. Phys. 16, 15630 (2014)CrossRefGoogle Scholar
  61. 61.
    Z. Sun, D. Pan, L. Xu, E. Wang, Proc. Natl. Acad. Sci. 109, 13177–13181 (2012)Google Scholar
  62. 62.
    M.-S. Lee, B.P. McGill, R. Rousseau, V.-A. Glezakou, J. Phys. Chem. C 122, 1125 (2017)CrossRefGoogle Scholar
  63. 63.
    R. Vuilleumier, N. Sator, B. Guillot, J. Non-Cryst, Solids 357, 2555 (2011)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Iréné Berenger Amiehe Essomba
    • 1
  • Carlo Massobrio
    • 1
  • Mauro Boero
    • 1
  • Guido Ori
    • 1
    Email author
  1. 1.Institut de Physique et de Chimie des Matériaux de Strasbourg UMR 7504Université de Strasbourg - CNRSStrasbourg Cedex 2France

Personalised recommendations