Making Computer Materials Real: The Predictive Power of First-Principles Molecular Dynamics

  • Carlo MassobrioEmail author
  • Mauro Boero
  • Sébastien Le Roux
  • Guido Ori
  • Assil Bouzid
  • Evelyne Martin
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 296)


First-principles molecular dynamics (FPMD) is a well-established method to study materials at the atomic scale by taking advantage of three ingredients: the laws of statistical mechanics, the theoretical foundations of density functional theory and powerful computers. FPMD does its best when the atomic structures are unknown or poorly known and when their time trajectories are required to extract, via statistical averages, a thermodynamical evolution as a function of temperature. In this paper, key concepts of molecular dynamics are recalled and made simple, by insisting on the proper use of some definitions and by showing, via a prototypical example, the sensitivity to a crucial part (the exchange-correlation energy) of the total energy functional.


  1. 1.
    T. Heine, Front. Mater. 1, 7 (2014)CrossRefGoogle Scholar
  2. 2.
    B. Alder, T. Wainwright, J. Chem. Phys. 27, 1208 (1957)Google Scholar
  3. 3.
    G. Battimelli, G. Ciccotti, Eur. Phys. J. 43, 303 (2018)Google Scholar
  4. 4.
    P. Allen, J.D. Tildesley, Computer Simulation of Liquids: Second Edition (Oxford University Press, 2017)Google Scholar
  5. 5.
    D. Frenkel, B. Smit, Understanding Molecular Simulation: From Algorithms to Applications (Elsevier, 2001, 1996)Google Scholar
  6. 6.
    P. Blochl, M. Parrinello, Phys. Rev. B 45, 9413 (1992)CrossRefGoogle Scholar
  7. 7.
    M. Wilson, B.K. Sharma, C. Massobrio, J. Chem. Phys. 128, 244505 (2008)Google Scholar
  8. 8.
    R. Car, F. de Angelis, P. Giannozzi, N. Marzari, Handbook of Materials Modeling: First-Principles Molecular Dynamics (Springer, Dordrecht, 2005)Google Scholar
  9. 9.
    R. Car, M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985)CrossRefGoogle Scholar
  10. 10.
    C. Massobrio, A. Pasquarello, R. Car 121, 2943 (1999)Google Scholar
  11. 11.
    P.S. Salmon, R.A. Martin, P.E. Mason, G.J. Cuello, (London) 435, 75 (2005)Google Scholar
  12. 12.
    P.S. Salmon, J. Non-Cryst, Solids. 353, 2959 (2007)Google Scholar
  13. 13.
    F.H.M. van Roon, C. Massobrio, E. de Wolff, S.W. de Leeuw, J. Chem. Phys. 113, 5425 (2000)CrossRefGoogle Scholar
  14. 14.
    J.Y. Raty, V.V. Godlevsky, J.P. Gaspard, C. Bichara, M. Bionducci, R. Bellissent, R. Ceolin, J.R. Chelikowsky, P. Ghosez, Phys. Rev. B 64, 235209 (2001)CrossRefGoogle Scholar
  15. 15.
    J.P. Perdew, Y. Wang, Phys. Rev. B 45, 13244 (1992)CrossRefGoogle Scholar
  16. 16.
    J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Phys. Rev. B 46, 6671 (1992)Google Scholar
  17. 17.
    A.D. Becke, Phys. Rev. A 38, 3098 (1988)CrossRefGoogle Scholar
  18. 18.
    C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988)CrossRefGoogle Scholar
  19. 19.
    M. Micoulaut, R. Vuilleumier, C. Massobrio, Phys. Rev. B 79, 214205 (2009)CrossRefGoogle Scholar
  20. 20.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. B 77, 3865 (1996)CrossRefGoogle Scholar
  21. 21.
    J. Akola, R.O. Jones, Phys. Rev. Lett. 100, 205502 (2008)CrossRefGoogle Scholar
  22. 22.
    G.C. Sosso, S. Caravati, R. Mazzarello, M. Bernasconi, Phys. Rev. B 83, 134201 (2011)CrossRefGoogle Scholar
  23. 23.
    G.C. Sosso, G. Miceli, S. Caravati, J. Behler, M. Bernasconi, Phys. Rev. B 85, 174103 (2012)CrossRefGoogle Scholar
  24. 24.
    N. Troullier, J.L. Martins, Phys. Rev. B 43, 1993 (1991)CrossRefGoogle Scholar
  25. 25.
    Y. Waseda, The Structure, of Non-Crystalline Materials (McGraw-Hill, New-York, 1980), describes the relationship between the three sets of partial structure factors commonly used (Faber-Ziman, Ashcroft-Langreth and Bhatia-Thornton)Google Scholar
  26. 26.
    I. Petri, P.S. Salmon, H.E. Fischer, J. Phys. 11, 7051 (1999)Google Scholar
  27. 27.
    S. Le Roux, A. Zeidler, P.S. Salmon, M. Boero, M. Micoulaut, C. Massobrio, Phys. Rev. 84, 134203 (2011)CrossRefGoogle Scholar
  28. 28.
    A. Bouzid, S. Gabardi, C. Massobrio, M. Boero, M. Bernasconi, Phys. Rev. B 91, 184201 (2015)CrossRefGoogle Scholar
  29. 29.
    A. Bouzid, H. Zaoui, P.L. Palla, G. Ori, M. Boero, C. Massobrio, F. Cleri, E. Lampin, Phys. Chem. Chem. Phys. 19, 9729 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Carlo Massobrio
    • 1
    Email author
  • Mauro Boero
    • 1
  • Sébastien Le Roux
    • 1
  • Guido Ori
    • 1
  • Assil Bouzid
    • 2
  • Evelyne Martin
    • 3
  1. 1.Université of Strasbourg Institut de Physique et de Chimie des Matériaux de StrasbourgStrasbourg Cedex 2France
  2. 2.Institut de Recherche sur les Céramiques (IRCER)LimogesFrance
  3. 3.Université de Lille CNRS Centrale Lille ISEN Université de Valenciennes UMR 8520LilleFrance

Personalised recommendations