Anatomy and Histology of Normal Liver and Spleen

  • Lynh NguyenEmail author
  • Ling Zhang


The spleen is the largest lymphatic organ in the body and lies just below the diaphragm in the left upper quadrant of the posterior peritoneal cavity adjacent to the left lower ribs, stomach, left kidney, tail of the pancreas, and colon. It is usually not palpable on physical examination, but may be felt in children, adolescents, and thin adults. The organ is extremely vulnerable to injury especially when the body experiences external trauma. Accessory spleens or spleniculi, in which a small nodule of splenic tissue is found outside the spleen proper, are not uncommon. It is important for us to learn anatomy, histology and normal functions of the spleen and liver before we review benign and malignant hematological disorders involving the organs.


Liver Spleen Anatomy Embryology Histology Normal functions 


  1. 1.
    Chung KW. Gross anatology. Baltimore: Williams & Wilkins; 1991.Google Scholar
  2. 2.
    Hiatt J, Phillips E, Morgenstern L. Surgical diseases of the spleen. Heidelberg: Springer; 2006.Google Scholar
  3. 3.
    Skandalakis J, Colborn GL, Pemberton LB. The surgical anatomy of the spleen. Probl Gen Surg. 1989;55(5):291.Google Scholar
  4. 4.
    Johnson K. Histology and cell biology. Baltimore: Williams & Walkins; 1991.Google Scholar
  5. 5.
    Young B, Heath J. Immune system. In: Young B, Heath J, editors. Wheater’s functional histology – a text and colour atlas. London: Churchill Livingstone; 2000. p. 193–221.Google Scholar
  6. 6.
    Skandalakis J, Gray S. Embryology for surgeons. Baltimore: Williams & Walkins; 1994.Google Scholar
  7. 7.
    Resende V, Petroianu A. Functions of the splenic remnant after subtotal splenectomy for treatment of severe splenic injuries. Am J Surg. 2003;185(4):311–5.PubMedCrossRefGoogle Scholar
  8. 8.
    Harrod VL, Howard TA, Zimmerman SA, Dertinger SD, Ware RE. Quantitative analysis of Howell-Jolly bodies in children with sickle cell disease. Exp Hematol. 2007;35(2):179–83.PubMedCrossRefGoogle Scholar
  9. 9.
    Geijtenbeek TB, Groot PC, Nolte MA, et al. Marginal zone macrophages express a murine homologue of DC-SIGN that captures blood-borne antigens in vivo. Blood. 2002;100(8):2908–16.PubMedCrossRefGoogle Scholar
  10. 10.
    Kang YS, Kim JY, Bruening SA, et al. The C-type lectin SIGN-R1 mediates uptake of the capsular polysaccharide of Streptococcus pneumoniae in the marginal zone of mouse spleen. Proc Natl Acad Sci U S A. 2004;101(1):215–20.PubMedCrossRefGoogle Scholar
  11. 11.
    Elomaa O, Sankala M, Pikkarainen T, et al. Structure of the human macrophage MARCO receptor and characterization of its bacteria-binding region. J Biol Chem. 1998;273(8):4530–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Medeiros L, O’Malley D, Caraway N, Vega F, Elenitoba-Johnson K, Lim M. Tumors of the lymph nodes and spleen. Washington, D.C.: ARP press; 2017.Google Scholar
  13. 13.
    Sandler SG. The spleen and splenectomy in immune (idiopathic) thrombocytopenic purpura. Semin Hematol. 2000;37(1 Suppl 1):10–2.PubMedCrossRefGoogle Scholar
  14. 14.
    Barcellini W. New insights in the pathogenesis of autoimmune hemolytic anemia. Transfus Med Hemother. 2015;42(5):287–93.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Matsumoto N, Ishihara T, Fujii H, Nakamura H, Uchino F, Miwa S. Fine structure of the spleen in autoimmune hemolytic anemia associated with systemic lupus erythematosus. Tohoku J Exp Med. 1978;124(3):223–32.PubMedCrossRefGoogle Scholar
  16. 16.
    Pillai S, Cariappa A, Moran ST. Marginal zone B cells. Annu Rev Immunol. 2005;23:161–96.PubMedCrossRefGoogle Scholar
  17. 17.
    van Krieken JH, Te Velde J, Hermans J, Welvaart K. The splenic red pulp; a histomorphometrical study in splenectomy specimens embedded in methyl methacrylate. Histopathology. 1985;9(4):401–16.PubMedCrossRefGoogle Scholar
  18. 18.
    Gray H, Lewis W. Gray’s anatomy of the human body. Bartleby: New York; 2000.Google Scholar
  19. 19.
    Torbenson M, Zen Y, Yeh M. Tumors of the liver. Washington, D.C.: ARP Press; 2018.Google Scholar
  20. 20.
    Roskams T, Desmet V. Embryology of extra- and intrahepatic bile ducts, the ductal plate. Anat Rec (Hoboken). 2008;291(6):628–35.CrossRefGoogle Scholar
  21. 21.
    Francis IR, Cohan RH, McNulty NJ, et al. Multidetector CT of the liver and hepatic neoplasms: effect of multiphasic imaging on tumor conspicuity and vascular enhancement. AJR Am J Roentgenol. 2003;180(5):1217–24.PubMedCrossRefGoogle Scholar
  22. 22.
    Sahani DV, Kalva SP. Imaging the liver. Oncologist. 2004;9(4):385–97.PubMedCrossRefGoogle Scholar
  23. 23.
    Bissoli E, Bison L, Gioulis E. Multislice CT fluoroscopy: technical principles, clinical applications and dosimetry. Radiol Med (Torino). 2003;106:201–2.Google Scholar
  24. 24.
    Hahn PF, Saini S. Liver-specific MR imaging contrast agents. Radiol Clin N Am. 1998;36(2):287–97.PubMedCrossRefGoogle Scholar
  25. 25.
    Kamel IR, Bluemke DA. MR imaging of liver tumors. Radiol Clin N Am. 2003;41(1):51–65.PubMedCrossRefGoogle Scholar
  26. 26.
    Young B, Heath J. Wheater’s functional histology. London: Churchill Livingstone; 2000.Google Scholar
  27. 27.
    Mills S. Histology for pathologists. Wolters Kluwer: Philadelphia; 2019.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Pathology and Laboratory MedicineJames A. Haley Veterans’ HospitalTampaUSA
  2. 2.Department of PathologyH. Lee Moffitt Cancer Center and Research InstituteTampaUSA

Personalised recommendations