Advertisement

Chaotic Vibrations of Two Euler-Bernoulli Beams With a Small Clearance

  • Jan Awrejcewicz
  • Vadim A. Krysko
Chapter
  • 63 Downloads
Part of the Scientific Computation book series (SCIENTCOMP)

Abstract

In this chapter a methodology to detect true/reliable chaos (in terms of non-linear dynamics) is developed on an example of a structure composed of two beams with a small clearance. The Euler-Bernoulli hypothesis is employed, and the contact interaction between beams follows the Kantor model. The complex non-linearity results from the von Kármán geometric non-linearity as well as the non-linearity implied by the contact interaction. The governing PDEs are reduced to ODEs by the second-order Finite Difference Method (FDM). The obtained system of equations is solved by Runge-Kutta methods of different accuracy. To purify the signal from errors introduced by numerical methods, the principal component analysis is employed and the sign of the first Lyapunov exponent is estimated by the Kantz, Wolf and Rosenstein methods and the method of neural networks. In the latter case a spectrum of the Lyapunov exponents is estimated. It has been illustrated how the number of nodes in the employed FDM influences the numerical results regarding chaotic vibrations. We have also shown how increase of the beams distance implies stronger action of the geometric nonlinearity, and hence influence of convergence of the used numerical algorithm for FDM has been demonstrated. Effect of essential dependence of the initial conditions choice on the numerical results of the studied contact problem is presented and discussed.

References

  1. 4.
    Alijani, F., Amabili, M.: Non-linear vibrations of shells: a literature review from 2003 to 2013. Int. J. Non Linear Mech. 58, 233–257 (2014)ADSCrossRefGoogle Scholar
  2. 52.
    Awrejcewicz, J., Krysko, A.V., Dobriyan, V., Papkova, I.V., Krysko, V.A.: On the Lyapunov exponents computation of coupled non-linear Euler-Bernoulli beams. In: Topping, B.H.V., Ivanyi, P. (eds.) Proceedings of the Fourteenth International Conference on Civil, Structural and Environmental Engineering Computing, pp. 53. Civil-Comp Press, Stirlingshire (2013)Google Scholar
  3. 53.
    Awrejcewicz, J., Krysko, V.A., Papkova, I.V., Yakovleva, T.V., Zagniboroda, N.A., Zhigalov, M.V., Krysko, A.V., Dobriyan, V., Krylova, E.Yu., Mitskevich, S.A.: Application of the Lyapunov exponents and wavelets to study and control of plates and shells. In: Awrejcewicz J. (ed.) Computational and Numerical Simulations, pp. 1–19. In:Tech (2014)Google Scholar
  4. 54.
    Awrejcewicz J., Krysko V.A., Papkova I.V., Krysko A.V.: Deterministic Chaos in One Dimensional Continuous Systems. World Scientific, Singapore (2016)CrossRefGoogle Scholar
  5. 79.
    Butcher, J.C.: Numerical Methods for Ordinary Differential Equations. Wiley, New York (2016)CrossRefGoogle Scholar
  6. 80.
    Cash, J.R., Karp, A.H.: A variable order Runge-Kutta method for initial value problems with rapidly varying right-hand sides. ACM Trans. Math. Soft. 16, 201–222 (1990)MathSciNetCrossRefGoogle Scholar
  7. 95.
    Daubechies, I., Grossmann, A., Meyer, Y.: Painless nonorthogonal expansions. J. Math. Phys. 27, 1271–1283 (1986)ADSMathSciNetCrossRefGoogle Scholar
  8. 100.
    Dormand, J.R., Prince, P.J.: A family of embedded Runge-Kutta formulae. J. Comput. Appl. Math. 6(1), 19–26 (1980)MathSciNetCrossRefGoogle Scholar
  9. 107.
    Euler, L.: Sur la force des colones. Mem. de L’Acad. Berlin 13, 252–282 (1757)Google Scholar
  10. 112.
    Fehlberg, E.: Low-order classical Runge-Kutta formulas with step size control and their application to some heat transfer problems. NASA Tech. Rep. 315 (1969)Google Scholar
  11. 113.
    Fehlberg, E.: Klassische Runge-Kutta-Formeln vierter und niedrigerer Ordnung mit Schrittweiten-Kontrolle und ihre Anwendung auf Wärmeleitungsprobleme. Computing 6(1–2), 61–71 (1970)MathSciNetCrossRefGoogle Scholar
  12. 137.
    Grossman, A., Morlet, S.: Decomposition of Hardy functions into square separable wavelets of constant shape. SIAM J. Math. Anal. 15(4), 723–736 (1984)MathSciNetCrossRefGoogle Scholar
  13. 138.
    Gulick, D.: Encounters with Chaos. McGraw-Hill, NewYork (1992)zbMATHGoogle Scholar
  14. 141.
    Haar, A.: Zur Theorie der orthogonalen Funktionensysteme. Math. Ann. 69(3), 331–371 (1910)MathSciNetCrossRefGoogle Scholar
  15. 151.
    Hotelling, H.: Analysis of a complex of statistical variables into principal components. J. Edu. Phychol. 24, 417–441 (1933)CrossRefGoogle Scholar
  16. 162.
    Kantor, B.Y., Bohatyrenko, T.L.: The method for solving contact problems in the nonlinear theory of shells. Rep. Acad. Sci. Ukr. SSR A(1), 18–21 (1986)Google Scholar
  17. 164.
    Kantz, H.: A robust method to estimate the maximum Lyapunov exponent of a time series. Phys. Lett. A 185, 77–87 (1994)ADSCrossRefGoogle Scholar
  18. 169.
    Kármán, T.: Festigkeitsprobleme in Maschinenbau. Encykle D Math. Wiss 4(4), 311–385 (1910)zbMATHGoogle Scholar
  19. 204.
    Krysko, A.V., Awrejcewicz, J., Kutepov, I.E., Zagniboroda, N.A., Dobriyan, V., Krysko, V.A.: Chaotic dynamics of flexible Euler-Bernoulli beams. Chaos 23(4), 043130-1– 043130-25 (2013)Google Scholar
  20. 205.
    Krysko, A.V., Awrejcewicz, J., Saltykova, O.A., Zhigalov, M.V., Krysko, V.A.: Investigations of chaotic dynamics of multi-layer beams using taking into account rotational inertial effects. Commun. Nonlinear Sci. Num. Simul. 19(8), 2568–2589 (2014)CrossRefGoogle Scholar
  21. 207.
    Krysko, A.V., Awrejcewicz, J., Papkova, I.V., Szymanowska, O., Krysko, V.A.: Principal component analysis in the nonlinear dynamics of beams: purification of the signal from noise induced by the nonlinearity of beam vibrations. Adv. Math. Phys. 2017, 1–9 (2017)MathSciNetCrossRefGoogle Scholar
  22. 209.
    Krysko, V.A., Awrejcewicz, J., Papkova, I.V., Saltykova, O.A., Krysko, A.V.: On reliability of chaotic dynamics of two Euler-Bernoulli beams with a small clearance. Int. J. Non Linear Mech. 104, 8–18 (2018)ADSCrossRefGoogle Scholar
  23. 222.
    Liang, Y.C., Lee, H.P., Lim, S.P., Lin, W.Z., Lee, K.H., Wu, C.G.: Proper orthogonal decomposition and its applications, Part I: Theory. J. Sound. Vib. 252, 527–544 (2002)ADSMathSciNetzbMATHGoogle Scholar
  24. 240.
    Meyer, Y.: Ondelettes et functions splines. Ecole Polytech. Paris, Tech. Rep. Semin. EDP (1986)Google Scholar
  25. 241.
    Meyer, Y.: Ondelettes, fonctions splines et analyses graduees. Lecture Notes Univ. Torino (1986)Google Scholar
  26. 242.
    Meyer, Y.: Wavelets: Algorithms and Applications. SIAM, Philadelphia (1993)zbMATHGoogle Scholar
  27. 285.
    Rosenstein, M.T., Collins, J.J., De Luca, C.J.: A practical method for calculating largest Lyapunov exponents from small data sets. Phys. D 65, 117–134 (1993)MathSciNetCrossRefGoogle Scholar
  28. 290.
    Sedighi, H.M., Shirazi, K.H., Zare, J.: Novel equivalent function for deadzone nonlinearity: applied to analytical solution of beam vibration using He’s parameter expanding method. Lat. Am. J. Sol. Struct. 9(4), 443–452 (2012)CrossRefGoogle Scholar
  29. 313.
    Süli, E., Mayers, D.: An Introduction to Numerical Analysis, Cambridge University Press, Cambridge (2003)CrossRefGoogle Scholar
  30. 315.
    Sylvester, J.J.: On the reduction of a bilinear quantic of the nth order to the form of a sum of n products by a double orthogonal substitution. Mess. Math. 19, 42–46 (1889)Google Scholar
  31. 351.
    Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining Lyapunov exponents from a time series. Phys. D 16, 285–317 (1985)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Jan Awrejcewicz
    • 1
  • Vadim A. Krysko
    • 2
  1. 1.Łódź University of TechnologyŁódźPoland
  2. 2.Department of Mathematics and ModelingSaratov State Technical UniversitySaratovRussia

Personalised recommendations