Advertisement

Graphene Patterning via Photolithography

  • B. AlfanoEmail author
  • E. Massera
  • M. L. Miglietta
  • T. Polichetti
  • Eugenia Bobeico
  • Paola Delli Veneri
  • G. Di Francia
Conference paper
  • 55 Downloads
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 629)

Abstract

We present a proof of concept to scale graphene based device fabrication combining Liquid Phase Exfoliated (LPE) method for the production of graphene flakes and standard photolithography for patterning high-resolution areas of graphene films (film widths down to 0.5 μm). The subsequent silver electrodes are created to test the patterned graphene films towards low NO2 concentrations at room temperature. The results prove that the combination of LPE method and standard photolithography could be a powerful strategy for building high-performance graphene based device with low cost and in large-scale.

Keywords

Photolithography Graphene patterning NO2 detection 

References

  1. 1.
    Neto AC, Guinea F, Peres NM, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 81(1):109ADSCrossRefGoogle Scholar
  2. 2.
    Bae S, Kim SJ, Shin D, Ahn JH, Hong BH (2012) Towards industrial applications of graphene electrodes. Phys Scr 2012(T146):014024CrossRefGoogle Scholar
  3. 3.
    Zurutuza A, Marinelli C (2014) Challenges and opportunities in graphene commercialization. Nat Nanotechnol 9(10):730ADSCrossRefGoogle Scholar
  4. 4.
    Lee Y, Bae S, Jang H, Jang S, Zhu SE, Sim SH, … Ahn JH (2010) Wafer-scale synthesis and transfer of graphene films. Nano Lett 10(2):490–493ADSCrossRefGoogle Scholar
  5. 5.
    Yamada T, Kim J, Ishihara M, Hasegawa M (2013) Low-temperature graphene synthesis using microwave plasma CVD. J Phys D Appl Phys 46(6):063001ADSCrossRefGoogle Scholar
  6. 6.
    Fedi F, Miglietta ML, Polichetti T, Ricciardella F, Massera E, Ninno D, Di Francia G (2015) Mater. A study on the physicochemical properties of hydroalcoholic solutions to improve the direct exfoliation of natural graphite down to few-layers graphene. Res. Express 2:035601–035608ADSCrossRefGoogle Scholar
  7. 7.
    Suk JW, Kitt A, Magnuson W, Hao Y, Ahmed S, An J, Swan A, Goldberg BB, Ruoff RS (2011) Transfer of CVD-grown monolayer graphene onto arbitrary substrates. ACS Nano 5:6916CrossRefGoogle Scholar
  8. 8.
    Liang BA, Sperling I, Calizo G, Cheng CA, Hacker Q, Zhang Y, Obeng K, Yan H, Peng Q, Li et al (2011) Toward clean and crackless transfer of graphene. ACS Nano 5:9144CrossRefGoogle Scholar
  9. 9.
    Lee S, Bae H, Jang S, Jang S-E, Zhu SH, Sim YI, Song BH, Hong, Ahn J-H (2010) Wafer-scale synthesis and transfer of graphene films. Nano Lett 10:490ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • B. Alfano
    • 1
    Email author
  • E. Massera
    • 1
  • M. L. Miglietta
    • 1
  • T. Polichetti
    • 1
  • Eugenia Bobeico
    • 1
  • Paola Delli Veneri
    • 1
  • G. Di Francia
    • 1
  1. 1.ENEA, CR-PorticiNaplesItaly

Personalised recommendations