Advertisement

Automatic Compensation of Parallel Capacitance of TPoS MEMS Resonator for Accurate Frequency Tracking with PLL-Based Oscillator Circuit

  • M. BaùEmail author
  • M. Ferrari
  • V. Ferrari
  • A. Ali
  • J. E.-Y. Lee
Conference paper
  • 56 Downloads
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 629)

Abstract

This paper proposes an oscillator circuit based on a phase-locked loop which automatically compensates for the parasitic capacitance of Thin-film Piezoelectric-on-Silicon (TPoS) contour-mode resonators. The circuit enables accurate tracking of the mechanical parameters of the resonators in demanding sensor applications by advantageously combining their favorable Q-factor with the electrical resonance enhancement arising from the automatic cancellation of parallel capacitance. Preliminary results on tracking the resonant frequency of a TPoS resonator due to temperature variations show a temperature coefficient of frequency of 53.4 ppm/°C.

Keywords

Piezoelectric resonators Thin-film Piezoelectric-on-Silicon resonator Phase-locked loop Automatic capacitance compensation Oscillator circuit 

References

  1. 1.
    Zuniga C, Rinaldi M, Piazza G (2009) Quality factor of MEMS and NEMS AlN Contour Mode Resonators in liquid media. In: IEEE international ultrasonics symposium, pp 2568–2571Google Scholar
  2. 2.
    Vignola JF, Judge JA, Jarzynski J, Zalalutdinov M, Houston BH, Baldwin LW (2006) Effect of viscous loss on mechanical resonators designed for mass detection. Appl Phys Lett 88:041921ADSCrossRefGoogle Scholar
  3. 3.
    Ferrari M, Ferrari V, Marioli D (2010) Interface circuit for multiple-harmonic analysis on quartz resonator sensors to investigate on liquid solution microdroplets. Sens Actuators B Chem 146(2):489–494CrossRefGoogle Scholar
  4. 4.
    Demori M, Baù M, Ferrari M, Ferrari V (2018) Interrogation techniques and interface circuits for coil-coupled passive sensors. Micromachines 9(9):449CrossRefGoogle Scholar
  5. 5.
    Baù M, Ferrari M, Ferrari V (2017) Analysis and validation of contactless time-gated interrogation technique for quartz resonator sensors. Sensors 17(6):1264CrossRefGoogle Scholar
  6. 6.
    Ferrari M, Baù M, Tonoli E, Ferrari V (2013) Piezoelectric resonant sensors with contactless interrogation for mass-sensitive and acoustic load detection. Sens Actuators A Phys 202:100–105CrossRefGoogle Scholar
  7. 7.
    Seo J, Brand O (2008) High Q-factor in-plane-mode resonant microsensor platform for gaseous/liquid environment. Microelectromech Syst J 17:483–493CrossRefGoogle Scholar
  8. 8.
    Ali A, Lee JE-Y (2017) Single device on-chip feedthrough cancellation for enhanced electrical characterization of piezoelectric-on-silicon resonators in liquid. Sens Actuator A 260:131–138CrossRefGoogle Scholar
  9. 9.
    Ali A, Lee JE-Y (2018) Piezoelectric-on-silicon square wine glass mode resonator for enhanced electrical characterization in water. IEEE Trans Electron Devices 65:1925–1931ADSCrossRefGoogle Scholar
  10. 10.
    Toledo J, Manzaneque T, Ruiz-Díez V, Kucera M, Pfusterschmied G, Wistrela E, Schmid U, Sánchez-Rojas JL (2016) Piezoelectric resonators and oscillator circuit based on higher-order out-of-plane modes for density-viscosity measurements of liquids. J Micromech Microeng 26(8):131–138CrossRefGoogle Scholar
  11. 11.
    Ferrari M, Ferrari V, Marioli D, Taroni A, Suman M, Dalcanale E (2006) In-liquid sensing of chemical compounds by QCM sensors coupled with high-accuracy ACC oscillator. IEEE Trans Instrum Meas 55(3):828–834CrossRefGoogle Scholar
  12. 12.
    Arnau A, García JV, Jimenez Y, Ferrari V, Ferrari M (2008) Improved electronic interfaces for AT-cut quartz crystal microbalance sensors under variable damping and parallel capacitance conditions. Rev Sci Instrum 79(7):075110ADSCrossRefGoogle Scholar
  13. 13.
    Cerini F, Ferrari M, Ferrari V, Russo A, Urquia MA, Ardito R, De Masi B, Sedmik RIP (2017) Electro-mechanical modelling and experimental characterization of a high-aspect-ratio electrostatic-capacitive MEMS device. Sens Actuators A Phys 266:219–231CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • M. Baù
    • 1
    Email author
  • M. Ferrari
    • 1
    • 2
  • V. Ferrari
    • 1
    • 2
  • A. Ali
    • 3
  • J. E.-Y. Lee
    • 3
    • 4
  1. 1.Department of Information EngineeringUniversity of BresciaBresciaItaly
  2. 2.INO-CNR (National Research Council)BresciaItaly
  3. 3.Department of Electronic EngineeringCity University of Hong KongKowloonHong Kong
  4. 4.State Key Laboratory of Terahertz and Millimeter WavesCity University of Hong KongKowloonHong Kong

Personalised recommendations