Photochemical Activation of Non-enzymatic Sensors Based on Cu/TiO2

  • C. Espro
  • S. G. Leonardi
  • S. Marini
  • G. NeriEmail author
  • D. M. Tobaldi
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 629)


In this paper are reported the photoelectrochemical properties of CuO/TiO2 for glucose sensing in alkaline media. First, we synthesized by the sol-gel method Cu-TiO2 samples having different Cu loading (from 0 to 10 wt%). The nanometric size of the materials synthesized is evidenced by the characterization done with different methods, including scanning electron microscopy SEM/EDX, TEM and X-ray powder diffraction XRPD. The influence of Cu loading over the photocatalytic performances of TiO2 was examined in detail carrying out electrochemical sensing tests at different illumination conditions. The obtained results demonstrated that the modified electrodes showed a higher specific response signal, lower detection limit and wider linearity range than the blank CuO electrode. The results of this study offer then guidelines for the design of photo-electrochemical screen-printed electrodes based on nano-sized CuO on titania for efficient detection of glucose.


Non-enzymatic sensors Glucose Copper nanoparticles Titanium dioxide 


  1. 1.
    Leonardi SG, Marini S, Espro C, Bonavita A, Galvagno S, Neri G (2017) In-situ grown flower-like nanostructured CuO on screen printed carbon electrodes for non-enzymatic amperometric sensing of glucose. Microchim Acta 184:2375–2385CrossRefGoogle Scholar
  2. 2.
    Marini S, Mansour NB, Hjiri M, Dhahri R, El Mir L, Espro C, Bonavita A, Galvagno S, Neri G, Leonardi SG (2018) Non-enzymatic glucose sensor based on nickel/carbon composite. Electroanalysis 30:727–733CrossRefGoogle Scholar
  3. 3.
    Fujishima A, Rao TN, Tryk DA (2000) Titanium dioxide photocatalysis. J Photochem Photobiol C 1:1–21CrossRefGoogle Scholar
  4. 4.
    de Brito JF, Tavella F, Genovese C, Ampelli C, Zanoni MVB, Centi G, Perathoner S (2018) Role of CuO in the modification of the photocatalytic water splitting behavior of TiO2 nanotube thin films. Appl Catal B 224:136–145CrossRefGoogle Scholar
  5. 5.
    Devadoss A, Sudhagar P, Terashima C, Nakata K, Fujishima A (2015) Photoelectrochemical biosensors: new insights into promising photoelectrodes and signal amplification strategies. J Photochem Photobiol C 24:43–63CrossRefGoogle Scholar
  6. 6.
    Li H, Li J, Chen D, Qiu Y, Wang W (2015) Dual-functional cubic cuprous oxide for non-enzymatic and oxygen-sensitive photoelectrochemical sensing of glucose. Sens Actuators B Chem 220:441–447CrossRefGoogle Scholar
  7. 7.
    Zhan W, Chen Z, Hu J, Chen X (2018) Vertical CuO nanowires array electrodes: Visible light sensitive photoelectrochemical biosensor of ethanol detection. Mater Sci Semicond Process 85:90–97CrossRefGoogle Scholar
  8. 8.
    Tobaldi DM, Lajaunie L, Caetano A, Rozman N, Seabra MP, Sever Skapin A, Arenal R, Labrincha JA (2018) Impact of rutile fraction on TiO2 visible-light absorption and visible-light-induced photocatalytic activity.
  9. 9.
    Tobaldi DM, Pullar RC, Gualtieri AF, Seabra MP, Labrincha A (2013) Sol-gel synthesis, characterisation and photocatalytic activity of pure, W-, Ag- and W/Ag co-doped TiO2 nanopowders. Chem Eng J 214:364–375CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • C. Espro
    • 1
  • S. G. Leonardi
    • 1
  • S. Marini
    • 1
  • G. Neri
    • 1
    Email author
  • D. M. Tobaldi
    • 2
  1. 1.Department of EngineeringUniversity of MessinaMessinaItaly
  2. 2.Department of Materials and Ceramic EngineeringUniversity of AveiroAveiroPortugal

Personalised recommendations