Advertisement

On the Computational Biomechanics of the Intervertebral Disc

  • A. P. G. CastroEmail author
  • P. Flores
  • J. C. P. Claro
  • António M. G. Completo
  • J. L. Alves
Chapter
  • 34 Downloads
Part of the Lecture Notes in Computational Vision and Biomechanics book series (LNCVB, volume 35)

Abstract

The intervertebral disc (IVD) is a central piece for spine biomechanics. When the IVD fails, there is a high chance that one is suffering from degenerative disc disease (DDD), which is one of the largest health problems faced worldwide. However, DDD and back pain are also strictly related to the other structures in the spine, such as the vertebral bodies (VBs) or the connecting ligaments. An important amount of experimental and numerical works have studied the spine, focusing on the IVD, the VB or the whole spinal segment, but questions on how degeneration occurs and what causes it are still to be fully answered. This chapter deals with finite element (FE) simulations of the non-degenerated human IVD time-dependent behaviour, using a generic IVD + VB FE model. The outcomes are inside the scope of different sources of experimental and numerical literature data, proving that this model is useful to distinguish between healthy and unhealthy loading levels (shown here as above 600–800 N in activity periods for human spine). In other words, the numerical simulations with this FE model demonstrated potential to mimic the IVD. The biomechanical behaviour of the spine is still dependent on multiple factors, but this increased knowledge on overload levels definitely helps to reduce the risk of DDD and other spine-related diseases to occur.

References

  1. 1.
    Noailly J (2009) Model developments for in silico studies of the lumbar spine biomechanics. PhD thesis, Universitat Politècnica de Catalunya, Spain. http://hdl.handle.net/2117/93381
  2. 2.
    Niosi CA, Oxland TR (2004) Degenerative mechanics of the lumbar spine. Spine J. 4:202–208.  https://doi.org/10.1016/j.spinee.2004.07.013CrossRefGoogle Scholar
  3. 3.
    Ebraheim NA, Hassan A, Lee M, Xu R (2004) Functional anatomy of the lumbar spine. Semin Pain Med 2:131–137.  https://doi.org/10.1016/j.spmd.2004.08.004CrossRefGoogle Scholar
  4. 4.
    Grumme T, Bittl M (1998) Imaging and therapy of degenerative spine diseases—a neurosurgeon’s view. Eur J Radiol 27:235–240CrossRefGoogle Scholar
  5. 5.
    Raj P (2008) Intervertebral disc: anatomy physiology pathophysiology treatment. Pain Pract 8:18–44.  https://doi.org/10.1111/j.1533-2500.2007.00171.xCrossRefPubMedGoogle Scholar
  6. 6.
    Shankar H, Scarlett JA, Abram SE (2009) Anatomy and pathophysiology of intervertebral disc disease. Tech Reg Anesth Pain Manag 13:67–75.  https://doi.org/10.1053/j.trap.2009.05.001CrossRefGoogle Scholar
  7. 7.
    Whatley BR, Wen X (2012) Intervertebral disc (IVD): structure, degeneration, repair and regeneration. Mater Sci Eng C 32:61–77.  https://doi.org/10.1016/j.msec.2011.10.011CrossRefGoogle Scholar
  8. 8.
    Fields AJ, Lee GL, Keaveny TM (2010) Mechanisms of initial endplate failure in the human vertebral body. J Biomech 43:3126–3131.  https://doi.org/10.1016/j.jbiomech.2010.08.002CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Swider P, Accadbled F, Laffosse JM, Sales de Gauzy J (2012) Influence of fluid-flow direction on effective permeability of the vertebral end plate: an analytical model. Comput Methods Biomech Biomed Eng 15:151–156.  https://doi.org/10.1080/10255842.2010.518960CrossRefGoogle Scholar
  10. 10.
    Adams MA, Dolan P, McNally DS (2009) The internal mechanical functioning of intervertebral discs and articular cartilage, and its relevance to matrix biology. Matrix Biol 28:384–389.  https://doi.org/10.1016/j.matbio.2009.06.004CrossRefPubMedGoogle Scholar
  11. 11.
    Hussain M, Natarajan RN, An HS, Andersson GBJ (2012) Progressive disc degeneration at C5–C6 segment affects the mechanics between disc heights and posterior facets above and below the degenerated segment: a flexion-extension investigation using a poroelastic C3-T1 finite element model. Med Eng Phys 34:552–558.  https://doi.org/10.1016/j.medengphy.2011.08.014CrossRefPubMedGoogle Scholar
  12. 12.
    Shirazi-Adl A, Schmidt H, Kingma I (2016) Spine loading and deformation—from loading to recovery. J Biomech 49:813–816.  https://doi.org/10.1016/j.jbiomech.2016.02.024CrossRefPubMedGoogle Scholar
  13. 13.
    Sato K, Kikuchi S, Yonezawa T (1999) In vivo intradiscal pressure measurement in healthy individuals and in patients with ongoing back problems. Spine (Phila. Pa. 1976). 24:2468–2474CrossRefGoogle Scholar
  14. 14.
    Pollintine P, van Tunen MSLM, Luo J, Brown MD, Dolan P, Adams MA (2010) Time-dependent compressive deformation of the ageing spine: relevance to spinal stenosis. Spine (Phila. Pa. 1976). 35:386–394.  https://doi.org/10.1097/BRS.0b013e3181b0ef26CrossRefGoogle Scholar
  15. 15.
    Guan Y, Yoganandan N, Moore J, Pintar FA, Zhang J, Maiman DJ, Laud P (2007) Moment-rotation responses of the human lumbosacral spinal column. J Biomech 40:1975–1980.  https://doi.org/10.1016/j.jbiomech.2006.09.027CrossRefPubMedGoogle Scholar
  16. 16.
    Rohlmann A, Petersen R, Schwachmeyer V, Graichen F, Bergmann G (2012) Spinal loads during position changes. Clin Biomech 27:754–758.  https://doi.org/10.1016/j.clinbiomech.2012.04.006CrossRefGoogle Scholar
  17. 17.
    Stannard JT, Edamura K, Stoker AM, O’Connell GD, Kuroki K, Hung CT, Choma TJ, Cook JL (2016) Development of a whole organ culture model for intervertebral disc disease. J Orthop Transl 5:1–8.  https://doi.org/10.1016/j.jot.2015.08.002CrossRefGoogle Scholar
  18. 18.
    Taher F, Essig D, Lebl DR, Hughes AP, Sama AA, Cammisa FP, Girardi FP (2012) Lumbar degenerative disc disease: current and future concepts of diagnosis and management. Adv Orthop 2012:970752.  https://doi.org/10.1155/2012/970752CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Colombini A, Lombardi G, Corsi MM, Banfi G (2008) Pathophysiology of the human intervertebral disc. Int J Biochem Cell Biol 40:837–842.  https://doi.org/10.1016/j.biocel.2007.12.011CrossRefPubMedGoogle Scholar
  20. 20.
    Massey CJ, Van Donkelaar CC, Vresilovic E, Zavaliangos A, Marcolongo M (2012) Effects of aging and degeneration on the human intervertebral disc during the diurnal cycle: a finite element study. J Orthop Res 30:122–128.  https://doi.org/10.1002/jor.21475CrossRefPubMedGoogle Scholar
  21. 21.
    Adams MA, Roughley PJ (2006) What is intervertebral disc degeneration, and what causes it? Spine (Phila. Pa. 1976). 31:2151–2161.  https://doi.org/10.1097/01.brs.0000231761.73859.2cCrossRefGoogle Scholar
  22. 22.
    Hadjipavlou AG, Tzermiadianos MN, Bogduk N, Zindrick MR (2008) The pathophysiology of disc degeneration: a critical review. J Bone Joint Surg Br 90:1261–1270.  https://doi.org/10.1302/0301-620X.90B10.20910CrossRefGoogle Scholar
  23. 23.
    Vergroesen P-PA, Kingma I, Emanuel KS, Hoogendoorn RJW, Welting TJ, van Royen BJ, van Dieën JH, Smit TH (2015) Mechanics and biology in intervertebral disc degeneration: a vicious circle. Osteoarthr Cartil 23:1057–1070.  https://doi.org/10.1016/j.joca.2015.03.028CrossRefPubMedGoogle Scholar
  24. 24.
    Martin MD, Boxell CM, Malone DG (2002) Pathophysiology of lumbar disc degeneration: a review of the literature. Neurosurg Focus 13:E1.  https://doi.org/10.3171/foc.2002.13.2.2CrossRefPubMedGoogle Scholar
  25. 25.
    Qasim M, Natarajan RN, An HS, Andersson GBJ (2012) Initiation and progression of mechanical damage in the intervertebral disc under cyclic loading using continuum damage mechanics methodology: a finite element study. J Biomech 45:1934–1940.  https://doi.org/10.1016/j.jbiomech.2012.05.022CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Castro APG, Laity P, Shariatzadeh M, Wittkowske C, Holland C, Lacroix D (2016) Combined numerical and experimental biomechanical characterization of soft collagen hydrogel substrate. J Mater Sci Mater Med 27:1–9.  https://doi.org/10.1007/s10856-016-5688-3CrossRefGoogle Scholar
  27. 27.
    Castro APG, Wilson W, Huyghe JM, Ito K, Alves JL (2014) Intervertebral disc creep behavior assessment through an open source finite element solver. J Biomech 47:297–301.  https://doi.org/10.1016/j.jbiomech.2013.10.014CrossRefPubMedGoogle Scholar
  28. 28.
    Cavalcanti C, Correia H, Castro APG, Alves JL (2013) Constitutive modelling of the annulus fibrosus: numerical implementation and numerical analysis. IEEE 3rd Port Meet Bioeng 7:3–6.  https://doi.org/10.1109/ENBENG.2013.6518408CrossRefGoogle Scholar
  29. 29.
    Wilson W, van Donkelaar CC, Huyghe JM (2005) A comparison between mechano-electrochemical and biphasic swelling theories for soft hydrated tissues. J Biomech Eng 127:158–165.  https://doi.org/10.1115/1.1835361CrossRefPubMedGoogle Scholar
  30. 30.
    Wilson W, Van Donkelaar CC, Van Rietbergen B, Huiskes R (2005) A fibril-reinforced poroviscoelastic swelling model for articular cartilage. J Biomech 38:1195–1204.  https://doi.org/10.1016/j.jbiomech.2004.07.003CrossRefPubMedGoogle Scholar
  31. 31.
    Heuer F, Schmitt H, Schmidt H, Claes L, Wilke HJ (2007) Creep associated changes in intervertebral disc bulging obtained with a laser scanning device. Clin Biomech 22:737–744.  https://doi.org/10.1016/j.clinbiomech.2007.04.010CrossRefGoogle Scholar
  32. 32.
    O’Connell GD, Jacobs NT, Sen S, Vresilovic EJ, Elliott DM (2011) Axial creep loading and unloaded recovery of the human intervertebral disc and the effect of degeneration. J Mech Behav Biomed Mater 4:933–942.  https://doi.org/10.1016/j.jmbbm.2011.02.002CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Wilke H-JJ, Neef P, Caimi M, Hoogland T, Claes LELE (1999) New in vivo measurements of pressures in the intervertebral disc in daily life. Spine (Phila. Pa. 1976). 24:755–762CrossRefGoogle Scholar
  34. 34.
    Castro APG, Paul CPL, Detiger SEL, Smit TH, van Royen BJ, Pimenta Claro JC, Mullender MG, Alves JL (2014) Long-term creep behavior of the intervertebral disk: comparison between bioreactor data and numerical results. Front Bioeng Biotechnol 2:56.  https://doi.org/10.3389/fbioe.2014.00056CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Huyghe JM, Houben GB, Drost MR, van Donkelaar CC (2002) An ionised/non-ionised dual porosity model of intervertebral disc tissue. Biomech Model Mechanobiol 2:3–19.  https://doi.org/10.1007/s10237-002-0023-yCrossRefGoogle Scholar
  36. 36.
    Riches PE, Dhillon N, Lotz J, Woods AW, McNally DS (2002) The internal mechanics of the intervertebral disc under cyclic loading. J Biomech 35:1263–1271CrossRefGoogle Scholar
  37. 37.
    Schroeder Y, Huyghe JM, Van Donkelaar CC, Ito K (2010) A biochemical/biophysical 3D FE intervertebral disc model. Biomech Model Mechanobiol 9:641–650.  https://doi.org/10.1007/s10237-010-0203-0CrossRefPubMedGoogle Scholar
  38. 38.
    Eberlein R, Holzapfel GA, Schulze-Bauer CAJ (2001) An anisotropic model for annulus tissue and enhanced finite element analyses of intact lumbar disc bodies. Comput Methods Biomech Biomed Eng 4:209–229.  https://doi.org/10.1080/10255840108908005CrossRefGoogle Scholar
  39. 39.
    Holzapfel GA, Schulze-Bauer CAJ, Feigl G, Regitnig P (2005) Single lamellar mechanics of the human lumbar anulus fibrosus. Biomech Model Mechanobiol 3:125–140.  https://doi.org/10.1007/s10237-004-0053-8CrossRefPubMedGoogle Scholar
  40. 40.
    Paul CPL, Schoorl T, Zuiderbaan HA, Zandieh Doulabi B, van der Veen AJ, van de Ven PM, Smit TH, van Royen BJ, Helder MN, Mullender MG (2013) Dynamic and static overloading induce early degenerative processes in caprine lumbar intervertebral discs. PLoS One 8.  https://doi.org/10.1371/journal.pone.0062411CrossRefGoogle Scholar
  41. 41.
    Paul CPL, Zuiderbaan HA, Zandieh Doulabi B, van der Veen AJ, van de Ven PM, Smit TH, Helder MN, van Royen BJ, Mullender MG (2012) Simulated-physiological loading conditions preserve biological and mechanical properties of caprine lumbar intervertebral discs in EX vivo culture. PLoS ONE 7:29–34.  https://doi.org/10.1371/journal.pone.0033147CrossRefGoogle Scholar
  42. 42.
    Detiger S, de Bakker J, Emanuel K, Schmitz M, Vergroesen P, van der Veen A, Mazel C, Smit T (2015). Translational challenges for the development of a novel nucleus pulposus substitute: experimental results from biomechanical and in vivo studies. J Biomater Appl 0:1–12.  https://doi.org/10.1177/0885328215611946CrossRefGoogle Scholar
  43. 43.
    Vergroesen PPA, Van Der Veen AJ, Van Royen BJ, Kingma I, Smit TH (2014) Intradiscal pressure depends on recent loading and correlates with disc height and compressive stiffness. Eur Spine J 23:2359–2368.  https://doi.org/10.1007/s00586-014-3450-4CrossRefPubMedGoogle Scholar
  44. 44.
    Alini M, Eisenstein SM, Ito K, Little C, Kettler AA, Masuda K, Melrose J, Ralphs J, Stokes I, Wilke HJ (2008) Are animal models useful for studying human disc disorders/degeneration? Eur Spine J 17:2–19.  https://doi.org/10.1007/s00586-007-0414-yCrossRefPubMedGoogle Scholar
  45. 45.
    Ayotte DC, Ito K, Tepic S (2001) Direction-dependent resistance to flow in the endplate of the intervertebral disc: an ex vivo study. J Orthop Res 19:1073–1077.  https://doi.org/10.1016/S0736-0266(01)00038-9CrossRefPubMedGoogle Scholar
  46. 46.
    Hoogendoorn RJW, Helder MN, Kroeze RJ, Bank RA, Smit TH, Wuisman PIJM (2008) Reproducible long-term disc degeneration in a large animal model. Spine (Phila. Pa. 1976). 33:949–954.  https://doi.org/10.1097/BRS.0b013e31816c90f0CrossRefGoogle Scholar
  47. 47.
    Schmidt H, Reitmaier S (2012) Is the ovine intervertebral disc a small human one? A finite element model study. J Mech Behav Biomed Mater 17:229–241.  https://doi.org/10.1016/j.jmbbm.2012.09.010CrossRefPubMedGoogle Scholar
  48. 48.
    Johannessen W, Elliott DM (2005) Effects of degeneration on the biphasic material properties of human nucleus pulposus in confined compression. Spine (Phila. Pa. 1976). 30:E724–E729.  https://doi.org/10.1097/01.brs.0000192236.92867.15CrossRefGoogle Scholar
  49. 49.
    Périé D, Korda D, Iatridis JC (2005) Confined compression experiments on bovine nucleus pulposus and annulus fibrosus: sensitivity of the experiment in the determination of compressive modulus and hydraulic permeability. J Biomech 38:2164–2171.  https://doi.org/10.1016/j.jbiomech.2004.10.002CrossRefPubMedGoogle Scholar
  50. 50.
    Araujo ARG, Peixinho N, Pinho A, Claro JCP (2015) The intradiscal failure pressure on porcine lumbar intervertebral discs: an experimental approach. Mech Sci 6:255–263.  https://doi.org/10.5194/ms-6-255-2015CrossRefGoogle Scholar
  51. 51.
    Bashkuev M, Vergroesen PPA, Dreischarf M, Schilling C, van der Veen AJ, Schmidt H, Kingma I (2016) Intradiscal pressure measurements: a challenge or a routine? J Biomech 49:864–868.  https://doi.org/10.1016/j.jbiomech.2015.11.011CrossRefPubMedGoogle Scholar
  52. 52.
    Araujo ARG, Peixinho N, Pinho ACM, Claro JCP (2014) A novel methodology to assess the relaxation rate of the intervertebral disc by increments on intradiscal pressure. Appl Mech Mater 664:379–383.  https://doi.org/10.4028/www.scientific.net/AMM.664.379CrossRefGoogle Scholar
  53. 53.
    Ferguson SJ, Ito K, Nolte LP (2004) Fluid flow and convective transport of solutes within the intervertebral disc. J Biomech 37:213–221.  https://doi.org/10.1016/S0021-9290(03)00250-1CrossRefPubMedGoogle Scholar
  54. 54.
    Schmidt H, Schilling C, Reyna ALP, Shirazi-Adl A, Dreischarf M (2016) Fluid-flow dependent response of intervertebral discs under cyclic loading: on the role of specimen preparation and preconditioning. J Biomech 49:846–856.  https://doi.org/10.1016/j.jbiomech.2015.10.029CrossRefPubMedGoogle Scholar
  55. 55.
    Lai A, Moon A, Purmessur D, Skovrlj B, Winkelstein BA, Cho SK, Hecht AC, Iatridis JC (2015) Assessment of functional and behavioral changes sensitive to painful disc degeneration. J Orthop Res 33:755–764.  https://doi.org/10.1002/jor.22833CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • A. P. G. Castro
    • 1
    Email author
  • P. Flores
    • 2
  • J. C. P. Claro
    • 2
  • António M. G. Completo
    • 3
  • J. L. Alves
    • 2
  1. 1.IDMEC, Instituto Superior TécnicoUniversity of LisbonLisbonPortugal
  2. 2.Department of Mechanical EngineeringUniversity of MinhoGuimarãesPortugal
  3. 3.Department of Mechanical EngineeringUniversity of AveiroAveiroPortugal

Personalised recommendations