Advertisement

Bone: Functions, Structure and Physiology

  • Joana da Costa ReisEmail author
  • Maria Teresa OliveiraEmail author
Chapter
  • 44 Downloads
Part of the Lecture Notes in Computational Vision and Biomechanics book series (LNCVB, volume 35)

Abstract

In this chapter, bone functions, regulation, morphological structure and physiology are revisited. Bone is a highly complex tissue, very sensitive and responsive to external and internal stimuli, and intimately intertwined with other organs. From embryogenesis to endocrine regulation and bone remodelling, a global assessment is presented. Considering the scope of this book, special emphasis is given to how cell structure and tissue organization modulate the response to mechanical stimuli.

Notes

Acknowledgements

This work has been partially supported by the European Commission under the 7th Framework Programme through the project Restoration, grant agreement CP-TP 280575-2 and through Portugal 2020/Alentejo 2020, grant POCI-01-0145-FEDER-032486. The support from Hamamatsu Photonics in providing the NanoZoomer SQ is also gratefully acknowledged. The authors would also like to thank Mr. Pedro Félix Pinto for the artwork included in this chapter that he so kindly prepared and made available.

References

  1. 1.
    de Vries WN, Evsikov AV, Haak BE et al (2004) Maternal β-catenin and E-cadherin in mouse development. Development 131:4435–4445PubMedCrossRefGoogle Scholar
  2. 2.
    Ingber DE (2006) Mechanical control of tissue morphogenesis during embryological development. Dev Biol 50:255–266Google Scholar
  3. 3.
    Oster GF, Murray JD, Harris AK (1983) Mechanical aspects of mesenchymal morphogenesis. J Embryol Exp Morphol 78:83–125PubMedGoogle Scholar
  4. 4.
    Takeichi M (1988) The cadherins: cell-cell adhesion molecules controlling animal morphogenesis. Development 102:639–655PubMedGoogle Scholar
  5. 5.
    Tang Z, Hu Y, Wang Z et al (2018) Mechanical forces program the orientation of cell division during airway tube morphogenesis. Dev Cell 44:313–325PubMedCrossRefGoogle Scholar
  6. 6.
    Foubet O, Trejo M, Toro R (2018) Mechanical morphogenesis and the development of neocortical organisation. CortexGoogle Scholar
  7. 7.
    Cartwright JHE, Piro O, Tuval I (2004) Fluid-dynamical basis of the embryonic development of left-right asymmetry in vertebrates. Proc Natl Acad Sci USA 101:7234–7239CrossRefGoogle Scholar
  8. 8.
    Collignon J, Varlet I, Robertson EJ (1996) Relationship between asymmetric nodal expression and the direction of embryonic turning. Nature 381:155–158PubMedCrossRefGoogle Scholar
  9. 9.
    Nakamura T, Mine N, Nakaguchi E et al (2006) Generation of robust left-right asymmetry in the mouse embryo requires a self-enhancement and lateral-inhibition system. Dev Cell 11:495–504PubMedCrossRefGoogle Scholar
  10. 10.
    Okada Y, Nonaka S, Tanaka Y et al (1999) Abnormal nodal flow precedes situs inversus in iv and inv mice. Mol Cell 4:459–468PubMedCrossRefGoogle Scholar
  11. 11.
    McGrath J, Somlo S, Makova S et al (2003) Two populations of node monocilia initiate left-right asymmetry in the mouse. Cell 114:61–73PubMedCrossRefGoogle Scholar
  12. 12.
    Patwari P, Lee RT (2008) Mechanical control of tissue morphogenesis. Circ Res 103:234–243PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Schmidt A, Brixius K, Bloch W (2007) Endothelial precursor cell migration during vasculogenesis. Circ Res 101:125–136PubMedCrossRefGoogle Scholar
  14. 14.
    Anava S, Greenbaum A, Ben Jacob E et al (2009) The regulative role of neurite mechanical tension in network development. Biophys J 96:1661–1670PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Bray D (1979) Mechanical tension produced by nerve cells in tissue culture. J Cell Sci 37:391–410PubMedGoogle Scholar
  16. 16.
    Dennerll TJ, Lamoureux P, Buxbaum RE, Heidemann SR (1989) The cytomechanics of axonal elongation and retraction. J Cell Biol 109:3073–3083PubMedCrossRefGoogle Scholar
  17. 17.
    le Noble F, Klein C, Tintu A et al (2008) Neural guidance molecules, tip cells, and mechanical factors in vascular development. Cardiovasc Res 78:232–241PubMedCrossRefGoogle Scholar
  18. 18.
    Carter DR, Beaupré GS (2001) Skeletal tissue histomorphology and mechanics. Skeletal function and form. Cambridge University Press, Cambridge, pp 31–52Google Scholar
  19. 19.
    Belanger LF (1969) Osteocytic osteolysis. Calcif Tissue Res 4:1–12PubMedCrossRefGoogle Scholar
  20. 20.
    Teti A, Zallone A (2009) Do osteocytes contribute to bone mineral homeostasis? Osteocytic osteolysis revisited. Bone 44:11–16PubMedCrossRefGoogle Scholar
  21. 21.
    Zallone A, Teti A, Primavera MV, Pace G (1983) Mature osteocytes behaviour in a repletion period: the occurrence of osteoplastic activity. Basic Appl Histochem 27:191–204Google Scholar
  22. 22.
    Green J, Kleeman CR (1991) The role of bone in the regulation of systemic acid-base balance. Kidney Int 39:9–26PubMedCrossRefGoogle Scholar
  23. 23.
    Arnett T (2003) Regulation of bone cell function by acid-base balance. Proc Nutr Soc 62:511–520PubMedCrossRefGoogle Scholar
  24. 24.
    Bushinsky DA, Krieger NS (2015) Acid-base balance and bone health. In: Holick MF, JNieves NW (eds) Nutrition and bone health. Humana Press Springer, New York, pp 335–357Google Scholar
  25. 25.
    Baylink DJ, Finkelman RD, Mohan S (1993) Growth factors to stimulate bone formation. J Bone Miner Res 8:S565–S572PubMedCrossRefGoogle Scholar
  26. 26.
    Linkhart TA, Mohan S, Baylink DJ (1996) Growth factors for bone growth and repair: IGF, TGFβ and BMP. Bone 19:S1–S12CrossRefGoogle Scholar
  27. 27.
    Krings A, Rahman S, Huang S et al (2012) Bone marrow fat has brown adipose tissue characteristics, which are attenuated with aging and diabetes. Bone 50:546–552PubMedCrossRefGoogle Scholar
  28. 28.
    Rosen CJ, Ackert-Bicknell C, Rodriguez JP, Pino AM (2009) Marrow fat and the bone microenvironment: developmental, functional, and pathological implications. Crit Rev Eukaryot Gene Expr 19:109–124PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Suchacki KJ, Cawthorn WP, Rosen CJ (2016) Bone marrow adipose tissue: formation, function and regulation. Curr Opin Pharmacol 28:50–56PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Roelofs-Iverson RA, Mulder DW, Elveback LR et al (1984) ALS and heavy metals: a pilot case-control study. Neurology 34:393PubMedCrossRefGoogle Scholar
  31. 31.
    Sharma B, Singh S, Siddiqi NJ (2014) Biomedical implications of heavy metals induced imbalances in redox systems. BioMed Research Int 2014:640754Google Scholar
  32. 32.
    Rhee Y, Bivi N, Farrow E et al (2011) Parathyroid hormone receptor signaling in osteocytes increases the expression of fibroblast growth factor-23 in vitro and in vivo. Bone 49:636–643PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Yamashita T, Yoshioka M, Itoh N (2000) Identification of a novel fibroblast growth factor, FGF-23, preferentially expressed in the ventrolateral thalamic nucleus of the brain. Biochem Biophys Res Commun 277:494–498PubMedCrossRefGoogle Scholar
  34. 34.
    Masuyama R, Stockmans I, Torrekens S et al (2006) Vitamin D receptor in chondrocytes promotes osteoclastogenesis and regulates FGF23 production in osteoblasts. J Clin Invest 116:3150–3159PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Fukumoto S, Martin TJ (2009) Bone as an endocrine organ. Trends Endocrinol Metab 20:230–236PubMedCrossRefGoogle Scholar
  36. 36.
    Haussler MR, Whitfield GK, Kaneko I et al (2012) The role of vitamin D in the FGF23, klotho, and phosphate bone-kidney endocrine axis. Rev Endocr Metab Disord 13:57–69PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Shimada T, Hasegawa H, Yamazaki Y et al (2004) FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J Bone Miner Res 19:429–435PubMedCrossRefGoogle Scholar
  38. 38.
    David V, Dai B, Martin A et al (2013) Calcium regulates FGF-23 expression in bone. Endocrinology 154:4469–4482PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Rodriguez-Ortiz ME, Lopez I, Muñoz-Castañeda JR et al (2012) Calcium deficiency reduces circulating levels of FGF23. J Am Soc Nephrol 23:1190–1197PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Fukumoto S, Yamashita T (2007) FGF23 is a hormone-regulating phosphate metabolism-unique biological characteristics of FGF23. Bone 40:1190–1195PubMedCrossRefGoogle Scholar
  41. 41.
    ADHR Consortium (2000) Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23. Nat Genet 26:345–348CrossRefGoogle Scholar
  42. 42.
    Shimada T, Mizutani S, Muto T et al (2001) Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia. Proc Natl Acad Sci USA 98:6500–6505CrossRefGoogle Scholar
  43. 43.
    Lyles KW, Halsey DL, Friedman NE, Lobaugh B (1988) Correlations of serum concentrations of 1,25-dihydroxyvitamin D, phosphorus, and parathyroid hormone in tumoral calcinosis. J Clin Endocrinol Metab 67:88–92PubMedCrossRefGoogle Scholar
  44. 44.
    Urakawa I, Yamazaki Y, Shimada T et al (2006) Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature 444:770–774PubMedCrossRefGoogle Scholar
  45. 45.
    Kurosu H, Yamamoto M, Clark JD et al (2005) Suppression of aging in mice by the hormone Klotho. Science 309:1829–1833PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Liu H, Fergusson MM, Castilho RM et al (2007) Augmented Wnt signaling in a mammalian model of accelerated aging. Science 317:803–806PubMedCrossRefGoogle Scholar
  47. 47.
    Doi S, Zou Y, Togao O et al (2011) Klotho inhibits transforming growth factor-β1 (TGF-β1) signaling and suppresses renal fibrosis and cancer metastasis in mice. J Biol Chem 286:8655–8665PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    López I, Rodríguez-Ortiz ME, Almadén Y et al (2011) Direct and indirect effects of parathyroid hormone on circulating levels of fibroblast growth factor 23 in vivo. Kidney Int 80:475–482PubMedCrossRefGoogle Scholar
  49. 49.
    Quarles LD (2012) Role of FGF23 in vitamin D and phosphate metabolism: implications in chronic kidney disease. Exp Cell Res 318:1040–1048PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Ben-Dov IZ, Galitzer H, Lavi-Moshayoff V et al (2007) The parathyroid is a target organ for FGF23 in rats. J Clin Invest 117:4003–4008PubMedPubMedCentralGoogle Scholar
  51. 51.
    Krajisnik T, Bjorklund P, Marsell R et al (2007) Fibroblast growth factor-23 regulates parathyroid hormone and 1alpha-hydroxylase expression in cultured bovine parathyroid cells. J Endocrinol 195:125–131PubMedCrossRefGoogle Scholar
  52. 52.
    Paloian NJ, Leaf EM, Giachelli CM (2016) Osteopontin protects against high phosphate-induced nephrocalcinosis and vascular calcification. Kidney Int 89:1027–1036PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Ferron M, Hinoi E, Karsenty G, Ducy P (2008) Osteocalcin differentially regulates β cell and adipocyte gene expression and affects the development of metabolic diseases in wild-type mice. Proc Natl Acad Sci USA 105:5266–5270CrossRefGoogle Scholar
  54. 54.
    Ferron M, Wei J, Yoshizawa T et al (2010) Insulin signaling in osteoblasts integrates bone remodelling and energy metabolism. Cell 142:296–308PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Fulzele K, Riddle RC, DiGirolamo DJ et al (2010) Insulin receptor signaling in osteoblasts regulates postnatal bone acquisition and body composition. Cell 142:309–319PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Lee NK, Karsenty G (2008) Reciprocal regulation of bone and energy metabolism. Trends Endocrinol Metab 19:161–166PubMedCrossRefGoogle Scholar
  57. 57.
    Reid IR, Ames R, Evans MC et al (1992) Determinants of total body and regional bone mineral density in normal postmenopausal women—a key role for fat mass. J Clin Endocrinol Metab 75:45–51PubMedGoogle Scholar
  58. 58.
    Ribot C, Tremollieres F, Pouilles JM et al (1987) Obesity and postmenopausal bone loss: the influence of obesity on vertebral density and bone turnover in postmenopausal women. Bone 8:327–331PubMedCrossRefGoogle Scholar
  59. 59.
    Kindblom JM, Ohlsson C, Ljunggren Ö et al (2009) Plasma osteocalcin is inversely related to fat mass and plasma glucose in elderly Swedish men. J Bone Miner Res 24:785–791PubMedCrossRefGoogle Scholar
  60. 60.
    Pittas AG, Harris SS, Eliades M et al (2009) Association between serum osteocalcin and markers of metabolic phenotype. J Clin Endocrinol Metab 94:827–832PubMedCrossRefGoogle Scholar
  61. 61.
    Oury F, Sumara G, Sumara O et al (2011) Endocrine regulation of male fertility by the skeleton. Cell 144:796–809PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Sommerfeldt D, Rubin C (2001) Biology of bone and how it orchestrates the form and function of the skeleton. Eur Spine J 10:S86–S95PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Augat P, Schorlemmer S (2006) The role of cortical bone and its microstructure in bone strength. Age Ageing 35(suppl_2):ii27–ii31PubMedCrossRefGoogle Scholar
  64. 64.
    Rho J-Y, Kuhn-Spearing L, Zioupos P (1998) Mechanical properties and the hierarchical structure of bone. Med Eng Phys 20:92–102PubMedCrossRefGoogle Scholar
  65. 65.
    Van De Graaff K (2001) Skeletal system: introduction and the axial skeleton. In: Lange M, Tibbetts K, Queck K (eds) Human Anatomy, 6th edn. McGraw-Hill College, Boston, pp 131–171Google Scholar
  66. 66.
    Weiner S, Traub W, Wagner HD (1999) Lamellar bone: structure-function relations. J Struct Biol 126:241–255PubMedCrossRefGoogle Scholar
  67. 67.
    Meyer U, Wiesmann HP (2006) Bone and cartilage. In: Schröder G (ed) Bone and cartilage engineering, 1st edn. Springer, Berlin, pp. 7–46Google Scholar
  68. 68.
    Oftadeh R, Perez-Viloria M, Villa-Camacho JC et al (2015) Biomechanics and mechanobiology of trabecular bone: a review. J Biomech Eng 137:010802CrossRefGoogle Scholar
  69. 69.
    Currey JD (2003) The many adaptations of bone. J Biomech 36:1487–1495PubMedCrossRefGoogle Scholar
  70. 70.
    Burr DB, Milgrom C, Fyhrie D et al (1996) In vivo measurement of human tibial strains during vigorous activity. Bone 18:405–410PubMedCrossRefGoogle Scholar
  71. 71.
    Duncan RL, Turner CH (1995) Mechanotransduction and the functional response of bone to mechanical strain. Calcif Tissue Int 57:344–358PubMedCrossRefGoogle Scholar
  72. 72.
    Zioupos P, Currey JD, Hamer AJ (1999) The role of collagen in the declining mechanical properties of aging human cortical bone. J Biomed Mater Res A 45:108–116CrossRefGoogle Scholar
  73. 73.
    Turner CH (2006) Bone strength: current concepts. Ann N Y Acad Sci 1068:429–446PubMedCrossRefGoogle Scholar
  74. 74.
    Young MF (2003) Bone matrix proteins: their function, regulation, and relationship to osteoporosis. Osteoporos Int 14:35–42CrossRefGoogle Scholar
  75. 75.
    Bodian DL, Chan T-F, Poon A et al (2009) Mutation and polymorphism spectrum in osteogenesis imperfecta type II: implications for genotype-phenotype relationships. Hum Mol Gen 18:463–471PubMedCrossRefGoogle Scholar
  76. 76.
    Fukada E, Yasuda I (1964) Piezoelectric effects in collagen. Jpn J Appl Phys 3:117–121CrossRefGoogle Scholar
  77. 77.
    Noris-Suárez K, Lira-Olivares J, Ferreira AM et al (2007) In vitro deposition of hydroxyapatite on cortical bone collagen stimulated by deformation-induced piezoelectricity. Biomacromol 8:941–948CrossRefGoogle Scholar
  78. 78.
    Ferreira AM, González G, González-Paz RJ et al (2009) Bone collagen role in piezoelectric mediated remineralization. Acta Microsc 18:278–286Google Scholar
  79. 79.
    Nudelman F, Pieterse K, George A et al (2010) The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors. Nat Mater 9:1004–1009PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Ashizawa N, Graf K, Do YS et al (1996) Osteopontin is produced by rat cardiac fibroblasts and mediates A (II)-induced DNA synthesis and collagen gel contraction. J Clin Invest 98:2218–2227PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Perrien DS, Brown EC, Aronson J et al (2002) Immunohistochemical study of osteopontin expression during distraction osteogenesis in the rat. J Histochem Cytochem 50:567–574PubMedCrossRefGoogle Scholar
  82. 82.
    Gross TS, King KA, Rabaia NA et al (2005) Upregulation of osteopontin by osteocytes deprived of mechanical loading or oxygen. J Bone Miner Res 20:250–256PubMedCrossRefGoogle Scholar
  83. 83.
    Harter LV, Hruska KA, Duncan RL (1995) Human osteoblast-like cells respond to mechanical strain with increased bone matrix protein production independent of hormonal regulation. Endocrinology 136:528–535PubMedCrossRefGoogle Scholar
  84. 84.
    Fisher LW, Torchia DA, Fohr B et al (2001) Flexible structures of SIBLING proteins, bone sialoprotein, and osteopontin. Biochem Biophys Res Commun 280:460–465PubMedCrossRefGoogle Scholar
  85. 85.
    Jahnen-Dechent W, Schäfer C, Ketteler M et al (2008) Mineral chaperones: a role for fetuin-A and osteopontin in the inhibition and regression of pathologic calcification. J Mol Med 86:379–389PubMedCrossRefGoogle Scholar
  86. 86.
    Thurner PJ, Chen CG, Ionova-Martin S et al (2010) Osteopontin deficiency increases bone fragility but preserves bone mass. Bone 46:1564–1573PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Bentmann A, Kawelke N, Moss D et al (2010) Circulating fibronectin affects bone matrix, whereas osteoblast fibronectin modulates osteoblast function. J Bone Miner Res 25:706–715PubMedGoogle Scholar
  88. 88.
    Huang G, Zhang Y, Kim B et al (2009) Fibronectin binds and enhances the activity of bone morphogenetic protein 1. J Biol Chem 284:25879–25888PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Kang Y, Georgiou AI, MacFarlane RJ et al (2017) Fibronectin stimulates the osteogenic differentiation of murine embryonic stem cells. J Tissue Eng Regen Med 11:1929–1940PubMedCrossRefGoogle Scholar
  90. 90.
    Linsley C, Wu B, Tawil B (2013) The effect of fibrinogen, collagen type I, and fibronectin on mesenchymal stem cell growth and differentiation into osteoblasts. Tissue Eng Part A 19:1416–1423PubMedCrossRefGoogle Scholar
  91. 91.
    Matlahov I, Iline-Vul T, Abayev M et al (2015) Interfacial mineral–peptide properties of a mineral binding peptide from osteonectin and bone-like apatite. Chem Mater 27:5562–5569CrossRefGoogle Scholar
  92. 92.
    Rosset EM, Bradshaw AD (2016) SPARC/osteonectin in mineralized tissue. Matrix Biol 52:78–87PubMedCrossRefGoogle Scholar
  93. 93.
    Delany AM, Hankenson KD (2009) Thrombospondin-2 and SPARC/osteonectin are critical regulators of bone remodelling. J Cell Commun Signal 3:227–238PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Delany AM, Amling M, Priemel M et al (2000) Osteopenia and decreased bone formation in osteonectin-deficient mice. J Clin Invest 105:915–923PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Wang M, Chao CC, Chen PC et al (2019) Thrombospondin enhances RANKL-dependent osteoclastogenesis and facilitates lung cancer bone metastasis. Biochem Pharmacol 166:23–32PubMedCrossRefGoogle Scholar
  96. 96.
    Wang P, Tang C, Wu J et al (2019) Pulsed electromagnetic fields regulate osteocyte apoptosis, RANKL/OPG expression, and its control of osteoclastogenesis depending on the presence of primary cilia. J Cell Physiol 234:10588–10601PubMedCrossRefGoogle Scholar
  97. 97.
    Ganss B, Kim RH, Sodek J (1999) Bone sialoprotein. Crit Rev Oral Biol Med 10:79–98PubMedCrossRefGoogle Scholar
  98. 98.
    Malaval L, Wade-Guéye NM, Boudiffa M et al (2008) Bone sialoprotein plays a functional role in bone formation and osteoclastogenesis. J Exp Med 205:1145–1153PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Holm E, Aubin JE, Hunter GK et al (2015) Loss of bone sialoprotein leads to impaired endochondral bone development and mineralization. Bone 71:145–154PubMedCrossRefGoogle Scholar
  100. 100.
    Bouleftour W, Juignet L, Verdière L et al (2019) Deletion of OPN in BSP knockout mice does not correct bone hypomineralization but results in high bone turnover. Bone 120:411–422PubMedCrossRefGoogle Scholar
  101. 101.
    Lamoureux F, Baud’huin M, Duplomb L et al (2007) Proteoglycans: key partners in bone cell biology. BioEssays 29:758–771PubMedCrossRefGoogle Scholar
  102. 102.
    Novince CM, Michalski MN, Koh AJ et al (2012) Proteoglycan 4: a dynamic regulator of skeletogenesis and parathyroid hormone skeletal anabolism. J Bone Miner Res 27:11–25PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Nakamura H (2007) Morphology, function, and differentiation of bone cells. J Hard Tissue Biol 16:15–22CrossRefGoogle Scholar
  104. 104.
    Palumbo C (1986) A three-dimensional ultrastructural study of osteoid-osteocytes in the tibia of chick embryos. Cell Tissue Res 246:125–131PubMedCrossRefGoogle Scholar
  105. 105.
    Bellows CG, Reimers SM, Heersche JNM (1999) Expression of mRNAs for type-I collagen, bone sialoprotein, osteocalcin, and osteopontin at different stages of osteoblastic differentiation and their regulation by 1,25 dihydroxyvitamin D3. Cell Tissue Res 297:249–259PubMedCrossRefGoogle Scholar
  106. 106.
    Bellows CG, Heersche JNM (2001) The frequency of common progenitors for adipocytes and osteoblasts and of committed and restricted adipocyte and osteoblast progenitors in fetal rat calvaria cell populations. J Bone Miner Res 16:1983–1993PubMedCrossRefGoogle Scholar
  107. 107.
    Schiller PC, D’Ippolito G, Balkan W et al (2001) Gap-junctional communication is required for the maturation process of osteoblastic cells in culture. Bone 28:362–369PubMedCrossRefGoogle Scholar
  108. 108.
    Komori T (2019) Regulation of Proliferation, Differentiation and Functions of Osteoblasts by Runx2. Int J Mol Sci 20:1694–1705PubMedCentralCrossRefPubMedGoogle Scholar
  109. 109.
    Rutkovskiy A, Stensløkken KO, Vaage IJ (2016) Osteoblast differentiation at a glance. Med Sci Mon Basic Res 22:95–106CrossRefGoogle Scholar
  110. 110.
    van der Meijden K, Bakker AD, van Essen HW et al (2016) Mechanical loading and the synthesis of 1, 25 (OH) 2 D in primary human osteoblasts. J Steroid Biochem Mol Biol 156:32–39PubMedCrossRefGoogle Scholar
  111. 111.
    van Bezooijen RL, Roelen BA, Visser A et al (2004) Sclerostin is an osteocyte-expressed negative regulator of bone formation, but not a classical BMP antagonist. J Exp Med 199:805–814PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Bonewald LF (2007) Osteocyte messages from a bony tomb. Cell Metab 5:410–411PubMedCrossRefGoogle Scholar
  113. 113.
    Jiang JX, Siller-Jackson AJ, Burra S (2007) Roles of gap junctions and hemichannels in bone cell functions and in signal transmission of mechanical stress. Front Biosci 12:1450–1462PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Tate ML Knothe, Adamson JR, Tami AE, Bauer TW (2004) The osteocyte. Int J Biochem Cell Biol 36:1–8CrossRefGoogle Scholar
  115. 115.
    Tate ML Knothe (2003) Whither flows the fluid in bone? An osteocyte’s perspective. J Biomech 36:1409–1424CrossRefGoogle Scholar
  116. 116.
    Burger EH, Klein-Nulend J (1999) Mechanotransduction in bone—role of the lacuno-canalicular network. FASEB J 13:101–112CrossRefGoogle Scholar
  117. 117.
    Mullender M, El Haj AJ, Yang Y et al (2004) Mechanotransduction of bone cells in vitro: mechanobiology of bone tissue. Med Biol Eng Comput 42:14–21PubMedCrossRefGoogle Scholar
  118. 118.
    Huang CP, Chen XM, Chen ZQ (2008) Osteocyte: the impresario in the electrical stimulation for bone fracture healing. Med Hypotheses 70:287–290PubMedCrossRefGoogle Scholar
  119. 119.
    Vasquez-Sancho F, Abdollahi A, Damjanovic D et al (2018) Flexoelectricity in bones. Adv Mater 30:1705316CrossRefGoogle Scholar
  120. 120.
    van Oers RF, Wang H, Bacabac RG (2015) Osteocyte shape and mechanical loading. Curr Osteoporos Rep 13:61–66PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Yu K, Sellman DP, Bahraini A et al (2018) Mechanical loading disrupts osteocyte plasma membranes which initiates mechanosensation events in bone. J Orthop Res 36:653–662PubMedPubMedCentralGoogle Scholar
  122. 122.
    Kringelbach TM, Aslan D, Novak I et al (2015) Fine-tuned ATP signals are acute mediators in osteocyte mechanotransduction. Cell Signal 27:2401–2409PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Morrell AE, Brown GN, Robinson ST et al (2018) Mechanically induced Ca 2+ oscillations in osteocytes release extracellular vesicles and enhance bone formation. Bone Res 6:6PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Cherian PP, Cheng B, Gu S et al (2003) Effects of mechanical strain on the function of gap junctions in osteocytes are mediated through the prostaglandin EP2 receptor. J Biol Chem 278:43146–43156PubMedCrossRefGoogle Scholar
  125. 125.
    Klein-Nulend J, Helfrich MH, Sterck JGH et al (1998) Nitric oxide response to shear stress by human bone cell cultures is endothelial nitric oxide synthase dependent. Biochem Biophys Res Commun 250:108–114PubMedCrossRefGoogle Scholar
  126. 126.
    Rawlinson SCF, Pitsillides AA, Lanyon LE (1996) Involvement of different ion channels in osteoblasts’ and osteocytes’ early responses to mechanical strain. Bone 19:609–614PubMedCrossRefGoogle Scholar
  127. 127.
    Jee WSS, Mori S, Li XJ, Chan S (1990) Prostaglandin E2 enhances cortical bone mass and activates intracortical bone remodelling in intact and ovariectomized female rats. Bone 11:253–266PubMedCrossRefGoogle Scholar
  128. 128.
    Fan X, Roy E, Zhu L et al (2004) Nitric oxide regulates receptor activator of nuclear factor κB ligand and osteoprotegerin expression in bone marrow stromal cells. Endocrinology 145:751–759PubMedCrossRefGoogle Scholar
  129. 129.
    Kasten TP, Collin-Osdoby P, Patel N et al (1994) Potentiation of osteoclast bone-resorption activity by inhibition of nitric oxide synthase. Proc Natl Acad Sci USA 91:3569–3573CrossRefGoogle Scholar
  130. 130.
    Hirose S, Li M, Kojima T et al (2007) A histological assessment on the distribution of the osteocytic lacunar canalicular system using silver staining. J Bone Miner Metab 25:374–382PubMedCrossRefGoogle Scholar
  131. 131.
    Jilka RL, Noble B, Weinstein RS (2013) Osteocyte apoptosis. Bone 54:264–271PubMedCrossRefGoogle Scholar
  132. 132.
    Lee KC, Jessop H, Suswillo R et al (2004) The adaptive response of bone to mechanical loading in female transgenic mice is deficient in the absence of oestrogen receptor-alpha and -beta. Endocrinology 182:193–201CrossRefGoogle Scholar
  133. 133.
    Plotkin LI, Mathov I, Aguirre JI et al (2005) Mechanical stimulation prevents osteocyte apoptosis: requirement of integrins, Src kinases, and ERKs. Am J Physiol 289:633–643CrossRefGoogle Scholar
  134. 134.
    Tomkinson A, Reeve J, Shaw RW, Noble BS (1997) The death of osteocytes via apoptosis accompanies estrogen withdrawal in human bone. J Clin Endocrinol Metab 82:3128–3135PubMedGoogle Scholar
  135. 135.
    Metz LN, Martin RB, Turner AS (2003) Histomorphometric analysis of the effects of osteocyte density on osteonal morphology and remodelling. Bone 33:753–759PubMedCrossRefGoogle Scholar
  136. 136.
    Milovanovic P, Zimmermann EA, Hahn M et al (2013) Osteocytic canalicular networks: morphological implications for altered mechanosensitivity. ACS Nano 7:7542–7551PubMedCrossRefGoogle Scholar
  137. 137.
    Okada S, Yoshida S, Ashrafi S, Schraufnagel D (2002) The Canalicular Structure of Compact Bone in the Rat at Different Ages. Microsc Microanal 8:104–115PubMedCrossRefGoogle Scholar
  138. 138.
    Rubin J, Greenfield EM (2005) Osteoclast: origin and differentiation. In: Farach-Carson MC, Bronner F, Rubin J (eds) Bone resorption. Springer, London, pp 1–23Google Scholar
  139. 139.
    Asagiri M, Takayanagi H (2007) The molecular understanding of osteoclast differentiation. Bone 40:251–264PubMedCrossRefGoogle Scholar
  140. 140.
    Nakagawa N, Kinosaki M, Yamaguchi K et al (1998) RANK is the essential signaling receptor for osteoclast differentiation factor in osteoclastogenesis. Biochem Biophys Res Commun 253:395–400PubMedCrossRefGoogle Scholar
  141. 141.
    Takayanagi H (2008) Regulation of osteoclastogenesis and osteoimmunology. Bone 42:S40CrossRefGoogle Scholar
  142. 142.
    Marchisio PC, Cirillo D, Naldini L et al (1984) Cell-substratum interaction of cultured avian osteoclasts is mediated by specific adhesion structures. J Cell Biol 99:1696–1705PubMedCrossRefGoogle Scholar
  143. 143.
    Väänänen HK, Horton M (1995) The osteoclast clear zone is a specialized cell-extracellular matrix adhesion structure. J Cell Sci 108:2729–2732PubMedGoogle Scholar
  144. 144.
    Baron R, Neff L, Louvard D, Courtoy PJ (1985) Cell-mediated extracellular acidification and bone resorption: evidence for a low pH in resorbing lacunae and localization of a 100-kD lysosomal membrane protein at the osteoclast ruffled border. J Cell Biol 101:2210–2222PubMedCrossRefGoogle Scholar
  145. 145.
    Blair HC, Teitelbaum SL, Ghiselli R, Gluck S (1989) Osteoclastic bone resorption by a polarized vacuolar proton pump. Science 245:855–857PubMedCrossRefGoogle Scholar
  146. 146.
    Rousselle AV, Heymann D (2002) Osteoclastic acidification pathways during bone resorption. Bone 30:533–540PubMedCrossRefGoogle Scholar
  147. 147.
    Littlewood-Evans A, Kokubo T, Ishibashi O et al (1997) Localization of cathepsin K in human osteoclasts by in situ hybridization and immunohistochemistry. Bone 20:81–86PubMedCrossRefGoogle Scholar
  148. 148.
    Vääräniemi J, Halleen JM, Kaarlonen K et al (2004) Intracellular machinery for matrix degradation in bone-resorbing osteoclasts. J Bone Miner Res 19:1432–1440PubMedCrossRefGoogle Scholar
  149. 149.
    Salo J, Lehenkari P, Mulari M et al (1997) Removal of osteoclast bone resorption products by transcytosis. Science 276:270–273PubMedCrossRefGoogle Scholar
  150. 150.
    Yamaki M, Nakamura H, Takahashi N et al (2005) Transcytosis of calcium from bone by osteoclast-like cells evidenced by direct visualization of calcium in cells. Arch Biochem Biophys 440:10–17PubMedCrossRefGoogle Scholar
  151. 151.
    Harada SI, Rodan GA (2003) Control of osteoblast function and regulation of bone mass. Nature 423:349–355PubMedCrossRefGoogle Scholar
  152. 152.
    Karsenty G, Kronenberg HM, Settembre C (2009) Genetic control of bone formation. Annu Rev Cell Dev Biol 25:629–648PubMedCrossRefGoogle Scholar
  153. 153.
    Siddiqui JA, Partridge NC (2016) Physiological bone remodeling: systemic regulation and growth factor involvement. Physiology (Bethesda) 31:233–245PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Murayama A, Takeyama K, Kitanaka S et al (1998) The promoter of the human 25-hydroxyvitamin D3 1 alpha-hydroxylase gene confers positive and negative responsiveness to PTH, calcitonin, and 1α,25(OH)2D3. Biochem Biophys Res Commun 249:11–16PubMedCrossRefGoogle Scholar
  155. 155.
    Haussler MR, Whitfield GK, Haussler CA et al (1998) The nuclear vitamin D receptor: biological and molecular regulatory properties revealed. J Bone Miner Res 13:325–349PubMedCrossRefPubMedCentralGoogle Scholar
  156. 156.
    Saini RK, Kaneko I, Jurutka PW et al (2013) 1, 25-dihydroxyvitamin d3 regulation of fibroblast growth factor-23 expression in bone cells: evidence for primary and secondary mechanisms modulated by leptin and interleukin-6. Calcif Tissue Int 92:339–353PubMedCrossRefGoogle Scholar
  157. 157.
    Clarke B (2008) Normal bone anatomy and physiology. Clin J Am Soc Nephrol 3:S131–S139PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Hong AR, Lee JH, Kim JH et al (2019) Effect of endogenous parathyroid hormone on bone geometry and skeletal microarchitecture. Calcif Tissue Int 104:382–389PubMedCrossRefPubMedCentralGoogle Scholar
  159. 159.
    Boissy P, Saltel F, Bouniol C et al (2002) Transcriptional activity of nuclei in multinucleated osteoclasts and its modulation by calcitonin. Endocrinology 143:1913–1921PubMedCrossRefPubMedCentralGoogle Scholar
  160. 160.
    Hadjidakis DJ, Androulakis II (2006) Bone remodelling. Ann NY Acad Sci 1092:385–396CrossRefGoogle Scholar
  161. 161.
    Isaksson OG, Jansson JO, Gause IA (1982) Growth hormone stimulates longitudinal bone growth directly. Science 216:1237–1239PubMedCrossRefPubMedCentralGoogle Scholar
  162. 162.
    Ohlsson C, Bengtsson BA, Isaksson OG et al (1998) Growth hormone and bone. Endocrine Rev 19:55–79Google Scholar
  163. 163.
    Ranke MB, Wit JM (2018) Growth hormone—past, present and future. Nat Rev Endocrinol 14:285–300PubMedCrossRefPubMedCentralGoogle Scholar
  164. 164.
    Wu S, Yang W, De Luca F (2015) Insulin-like growth factor-independent effects of growth hormone on growth plate chondrogenesis and longitudinal bone growth. Endocrinology 156:2541–2551PubMedCrossRefPubMedCentralGoogle Scholar
  165. 165.
    Kuzma M, Kuzmova Z, Zelinkova Z et al (2014) Impact of the growth hormone replacement on bone status in growth hormone deficient adults. Growth Horm IGF Res 24:22–28PubMedCrossRefGoogle Scholar
  166. 166.
    Guevarra MS, Yeh JK, Castro Magana M, Aloia JF (2010) Synergistic effect of parathyroid hormone and growth hormone on trabecular and cortical bone formation in hypophysectomized rats. Hormone Res Paediatr 73:248–257CrossRefGoogle Scholar
  167. 167.
    Lupu F, Terwilliger JD, Lee K et al (2001) Roles of growth hormone and insulin-like growth factor 1 in mouse postnatal growth. Dev Biol 229:141–162PubMedCrossRefPubMedCentralGoogle Scholar
  168. 168.
    Zhang M, Xuan S, Bouxsein ML et al (2002) Osteoblast-specific knockout of the insulin-like growth factor (IGF) receptor gene reveals an essential role of IGF signaling in bone matrix mineralization. J Biol Chem 277:44005–44012PubMedCrossRefPubMedCentralGoogle Scholar
  169. 169.
    Zhang W, Shen X, Wan C et al (2012) Effects of insulin and insulin-like growth factor 1 on osteoblast proliferation and differentiation: differential signalling via Akt and ERK. Cell Biochem Funct 30:297–302PubMedCrossRefPubMedCentralGoogle Scholar
  170. 170.
    Fowlkes JL, Bunn RC, Liu L et al (2008) Runt-related transcription factor 2 (RUNX2) and RUNX2-related osteogenic genes are down-regulated throughout osteogenesis in type 1 diabetes mellitus. Endocrinology 149:1697–1704PubMedCrossRefPubMedCentralGoogle Scholar
  171. 171.
    Chen JH, Liu C, You L, Simmons CA (2010) Boning up on Wolff’s Law: mechanical regulation of the cells that make and maintain bone. J Biomech 43:108–118PubMedCrossRefPubMedCentralGoogle Scholar
  172. 172.
    Ding W, Li J, Singh J et al (2015) miR-30e targets IGF2-regulated osteogenesis in bone marrow-derived mesenchymal stem cells, aortic smooth muscle cells, and ApoE −/− mice. Cardiovasc Res 106:131–142PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Turner RT, Riggs BL, Spelsberg TC (1994) Skeletal effects of estrogen. Endocr Rev 15:275–300PubMedGoogle Scholar
  174. 174.
    Khosla S, Monroe DG (2018) Regulation of bone metabolism by sex steroids. Cold Spring Harb Perspect Med 8:a031211PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    Prince RL (1994) Counterpoint: estrogen effects on calcitropic hormones and calcium homeostasis. Endocr Rev 15:301–309PubMedCrossRefGoogle Scholar
  176. 176.
    Liel Y, Shany S, Smirnoff P, Schwartz B (1999) Estrogen increases 1, 25-dihydroxyvitamin D receptors expression and bioresponse in the rat duodenal mucosa 1. Endocrinology 140:280–285PubMedCrossRefGoogle Scholar
  177. 177.
    ten Bolscher M, Netelenbos JC, Barto R, van Buuren LM (1999) Estrogen regulation of intestinal calcium absorption in the intact and ovariectomized adult rat. J Bone Miner Res 14:1197–1202PubMedCrossRefGoogle Scholar
  178. 178.
    Draper CR, Edel MJ, Dick IM et al (1997) Phytoegens reduce bone loss and bone resorption in oophorectomized rats. J Nut 127:1795–1799CrossRefGoogle Scholar
  179. 179.
    Robinson LJ, Yaroslavskiy BB, Griswold RD et al (2009) Estrogen inhibits RANKL-stimulated osteoclastic differentiation of human monocytes through estrogen and RANKL-regulated interaction of estrogen receptor-α with BCAR1 and Traf6. Exp Cell Res 315:1287–1301PubMedPubMedCentralCrossRefGoogle Scholar
  180. 180.
    Väänänen HK (2005) Mechanism of osteoclast mediated bone resorption-rationale for the design of new therapeutics. Adv Drug Deliv Rev 57:959–971PubMedCrossRefGoogle Scholar
  181. 181.
    Emerton KB, Hu B, Woo AA et al (2010) Osteocyte apoptosis and control of bone resorption following ovariectomy in mice. Bone 46:577–583PubMedCrossRefGoogle Scholar
  182. 182.
    Kousteni S, Chen JR, Bellido T et al (2002) Reversal of bone loss in mice by nongenotropic signaling of sex steroids. Science 298:843–846PubMedCrossRefGoogle Scholar
  183. 183.
    Faloni APDS, Sasso-Cerri E, Rocha FRG et al (2012) Structural and functional changes in the alveolar bone osteoclasts of estrogen-treated rats. J Anat 220:77–85PubMedCrossRefGoogle Scholar
  184. 184.
    Faloni APS, Sasso-Cerri E, Katchburian E, Cerri PS (2007) Decrease in the number and apoptosis of alveolar bone osteoclasts in estrogen-treated rats. J Periodont Res 42:193–201PubMedCrossRefGoogle Scholar
  185. 185.
    Hughes DE, Dai A, Tiffee JC et al (1996) Estrogen promotes apoptosis of murine osteoclasts mediated by TGF-β. Nature Med 2:1132–1136PubMedCrossRefGoogle Scholar
  186. 186.
    Khosla S, Oursler MJ, Monroe DG (2012) Estrogen and the skeleton. Trends Endocrinol Metab 23:576–581PubMedPubMedCentralCrossRefGoogle Scholar
  187. 187.
    Rodan GA, Martin TJ (2000) Therapeutic approaches to bone diseases. Science 289:1508–1514PubMedCrossRefGoogle Scholar
  188. 188.
    Riggs BL, Khosla S, Melton LJ (1998) A unitary model for involutional osteoporosis: estrogen deficiency causes both type I and type II osteoporosis in postmenopausal women and contributes to bone loss in aging men. J Bone Miner Res 13:763–773PubMedCrossRefGoogle Scholar
  189. 189.
    Almeida M, Laurent MR, Dubois V et al (2016) Estrogens and androgens in skeletal physiology and pathophysiology. Physiol Rev 97:135–187PubMedCentralCrossRefPubMedGoogle Scholar
  190. 190.
    Compston JE (2001) Sex steroids and bone. Physiol Rev 81:419–447PubMedCrossRefGoogle Scholar
  191. 191.
    Vanderschueren D, Vandenput L, Boonen S et al (2004) Androgens and bone. Endocr Rev 25:389–425PubMedCrossRefGoogle Scholar
  192. 192.
    Taaffe DR, Galvão DA, Spry N et al (2019) Immediate versus delayed exercise in men initiating androgen deprivation: effects on bone density and soft tissue composition. BJU Int 123:261–269PubMedCrossRefGoogle Scholar
  193. 193.
    Bassett JD, Williams GR (2016) Role of thyroid hormones in skeletal development and bone maintenance. Endocr Rev 37:135–187PubMedPubMedCentralCrossRefGoogle Scholar
  194. 194.
    El Hadidy M, Ghonaim M, El Gawad S, El Atta MA (2011) Impact of severity, duration, and etiology of hyperthyroidism on bone turnover markers and bone mineral density in men. BMC Endocr Disord 11:15PubMedCentralCrossRefPubMedGoogle Scholar
  195. 195.
    Harvey RD, McHardy KC, Reid IW et al (1991) Measurement of bone collagen degradation in hyperthyroidism and during thyroxine replacement therapy using pyridinium cross-links as specific urinary markers. J Clin Endocrinol Metab 72:1189–1194PubMedCrossRefGoogle Scholar
  196. 196.
    Waring AC, Harrison S, Fink HA et al (2013) A prospective study of thyroid function, bone loss, and fractures in older men: The MrOS study. J Bone Miner Res 28:472–479PubMedPubMedCentralCrossRefGoogle Scholar
  197. 197.
    Britto JM, Fenton AJ, Holloway WR et al (1994) Osteoblasts mediate thyroid hormone stimulation of osteoclastic bone resorption. Endocrinology 134:169–176PubMedCrossRefGoogle Scholar
  198. 198.
    Abe E, Marians RC, Yu W et al (2003) TSH is a negative regulator of skeletal remodelling. Cell 115:151–162PubMedCrossRefGoogle Scholar
  199. 199.
    Sun L, Vukicevic S, Baliram R et al (2008) Intermittent recombinant TSH injections prevent ovariectomy-induced bone loss. Proc Natl Acad Sci USA 105:4289–4294CrossRefGoogle Scholar
  200. 200.
    Neumann S, Eliseeva E, Boutin A et al (2018) Discovery of a positive allosteric modulator of the thyrotropin receptor: potentiation of thyrotropin-mediated preosteoblast differentiation in vitro. J Pharmacol Exp Ther 364:38–45PubMedPubMedCentralCrossRefGoogle Scholar
  201. 201.
    Chen XX, Yang T (2015) Roles of leptin in bone metabolism and bone diseases. J Bone Miner Metab 33:474–485PubMedCrossRefGoogle Scholar
  202. 202.
    Shi Y, Yadav VK, Suda N et al (2008) Dissociation of the neuronal regulation of bone mass and energy metabolism by leptin in vivo. Proc Natl Acad Sci USA 105:20529–20533CrossRefGoogle Scholar
  203. 203.
    Holloway WR, Collier FM, Aitken CJ et al (2002) Leptin inhibits osteoclast generation. J Bone Miner Res 17:200–209PubMedCrossRefGoogle Scholar
  204. 204.
    Elefteriou F, Takeda S, Ebihara K et al (2004) Serum leptin level is a regulator of bone mass. Proc Natl Acad Sci USA 101:3258–3263CrossRefGoogle Scholar
  205. 205.
    Hamrick MW, Ferrari SL (2008) Leptin and the sympathetic connection of fat to bone. Osteoporos Int J Establ Result Coop Eur Found Osteoporos Natl Osteoporos Found USA 19:905–912CrossRefGoogle Scholar
  206. 206.
    Turner RT, Kalra SP, Wong CP et al (2013) Peripheral leptin regulates bone formation. J Bone Miner Res 28:22–34PubMedPubMedCentralCrossRefGoogle Scholar
  207. 207.
    Mantzoros CS, Magkos F, Brinkoetter M et al (2011) Leptin in human physiology and pathophysiology. Am J Physiol Endocrinol Metab 301:E567–E584PubMedPubMedCentralCrossRefGoogle Scholar
  208. 208.
    DeBlasio MJ, Lanham SA, Blache D et al (2018) Sex-and bone-specific responses in bone structure to exogenous leptin and leptin receptor antagonism in the ovine fetus. Am J Physiol Regul Integr Comp Physiol 314:R781–R790CrossRefGoogle Scholar
  209. 209.
    Maor G, Rochwerger M, Segev Y, Phillip M (2002) Leptin acts as a growth factor on the chondrocytes of skeletal growth centres. J Bone Miner Res 17:1034–1043PubMedCrossRefGoogle Scholar
  210. 210.
    Ruys CA, van de Lagemaat M, Lafeber HN et al (2018) Leptin and IGF-1 in relation to body composition and bone mineralization of preterm-born children from infancy to 8 years. Clin Endocrinol 89:76–84CrossRefGoogle Scholar
  211. 211.
    Tsuji K, Maeda T, Kawane T et al (2010) Leptin stimulates fibroblast growth factor 23 expression in bone and suppresses renal 1α25-dihydroxyvitamin D3 synthesis in leptin-deficient ob/ob mice. J Bone Miner Res 25:1711–1723PubMedCrossRefGoogle Scholar
  212. 212.
    López I, Pineda C, Raya AI et al (2016) Leptin directly stimulates parathyroid hormone secretion. Endocrine Abstracts 41:GP144Google Scholar
  213. 213.
    Urist MR (1965) Bone: formation by autoinduction. Science 150:893–899PubMedCrossRefGoogle Scholar
  214. 214.
    Kobayashi T, Lyons KM, McMahon AP, Kronenberg HM (2005) BMP signaling stimulates cellular differentiation at multiple steps during cartilage development. Proc Natl Acad Sci USA 102:18023–18027CrossRefGoogle Scholar
  215. 215.
    Beederman M, Lamplot JD, Nan G et al (2013) BMP signaling in mesenchymal stem cell differentiation and bone formation. J Biomed Sci Eng 6:32–52PubMedPubMedCentralCrossRefGoogle Scholar
  216. 216.
    Rahman MS, Akhtar N, Jamil HM et al (2015) TGF-/BMP signaling and other molecular events: regulation of osteoblastogenesis and bone formation. Bone Res 3:15005PubMedPubMedCentralCrossRefGoogle Scholar
  217. 217.
    Lin GL, Hankenson KD (2011) Integration of BMP, Wnt, and notch signaling pathways in osteoblast differentiation. J Cell Biochem 112:3491–3501PubMedPubMedCentralCrossRefGoogle Scholar
  218. 218.
    Kang Q, Song WX, Luo Q et al (2008) A comprehensive analysis of the dual roles of BMPs in regulating adipogenic and osteogenic differentiation of mesenchymal progenitor cells. Stem Cells Dev 18:545–559PubMedCentralCrossRefPubMedGoogle Scholar
  219. 219.
    Kang Q, Sun MH, Cheng H et al (2004) Characterization of the distinct orthotopic bone-forming activity of 14 BMPs using recombinant adenovirus-mediated gene delivery. Gene Ther 11:1312–1320PubMedCrossRefGoogle Scholar
  220. 220.
    Huang E, Zhu G, Jiang W et al (2012) Growth hormone synergizes with BMP9 in osteogenic differentiation by activating the JAK/STAT/IGF1 pathway in murine multilineage cells. J Bone Miner Res 27:1566–1575PubMedCrossRefGoogle Scholar
  221. 221.
    Li RD, Deng ZL, Hu N et al (2012) Biphasic effects of TGFβ1 on BMP9-induced osteogenic differentiation of mesenchymal stem cells. BMB Rep 45:509–514PubMedCrossRefGoogle Scholar
  222. 222.
    Cheng H, Jiang W, Phillips FM et al (2003) Osteogenic activity of the fourteen types of human bone morphogenetic proteins (BMPs). J Bone Joint Surg Am 85:1544–1552PubMedCrossRefGoogle Scholar
  223. 223.
    Franceschi RT, Wang D, Krebsbach PH, Rutherford RB (2000) Gene therapy for bone formation: in vitro and in vivo osteogenic activity of adenovirus expressing BMP-7. Ann Arbor 1001:48109–1078Google Scholar
  224. 224.
    Jane JA Jr, Dunford BA, Kron A et al (2002) Ectopic osteogenesis using adenoviral bone morphogenetic protein (BMP)-4 and BMP-6 gene transfer. Mol Ther 6:464–470PubMedCrossRefGoogle Scholar
  225. 225.
    Carreira AC, Lojudice FH, Halcsik E et al (2014) Bone morphogenetic proteins facts, challenges, and future perspectives. J Dent Res 93:335–345PubMedCrossRefGoogle Scholar
  226. 226.
    Cheng A, Krishnan L, Tran L et al (2019) The effects of age and dose on gene expression and segmental bone defect repair after BMP‐2 Delivery. JBMR Plus 3:e100681-11PubMedPubMedCentralCrossRefGoogle Scholar
  227. 227.
    Holien T, Westhrin M, Moen SH et al (2018) BMP4 gene therapy inhibits myeloma tumor growth, but has a negative impact on bone. Blood 132:1928CrossRefGoogle Scholar
  228. 228.
    Frost HM (1987) Bone “mass” and the “mechanostat”: a proposal. Anat Rec 219:1–9PubMedCrossRefGoogle Scholar
  229. 229.
    Corral DA, Amling M, Priemel M et al (1998) Dissociation between bone resorption and bone formation in osteopenic transgenic mice. Proc Natl Acad Sci USA 95:13835–13840CrossRefGoogle Scholar
  230. 230.
    Kong Y-Y, Feige U, Sarosi I et al (1999) Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature 402:304–309PubMedCrossRefGoogle Scholar
  231. 231.
    Suda T, Takahashi N, Udagawa N et al (1999) Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr Rev 20:345–357PubMedCrossRefGoogle Scholar
  232. 232.
    Miyamoto T, Suda T (2003) Differentiation and function of osteoclasts. Keio J Med 52:1–7PubMedCrossRefGoogle Scholar
  233. 233.
    Fan X, Rahnert JA, Murphy TC et al (2006) Response to mechanical strain in an immortalized pre-osteoblast cell is dependent on ERK1/2. J Cell Physiol 207:454–460PubMedCrossRefGoogle Scholar
  234. 234.
    Kreja L, Liedert A, Hasni S, Claes L, Ignatius A (2008) Intermittent mechanical strain increases RANKL expression in human osteoblasts. J Biomech 41:S462CrossRefGoogle Scholar
  235. 235.
    Kim DW, Lee HJ, Karmin JA et al (2006) Mechanical loading differentially regulates membrane-bound and soluble RANKL availability in MC3T3-E1 cells. Ann NY Acad Sci 1068:568–572PubMedCrossRefGoogle Scholar
  236. 236.
    Liu W, Xu C, Zhao H et al (2015) Osteoprotegerin induces apoptosis of osteoclasts and osteoclast precursor cells via the fas/fas ligand pathway. PLoS ONE 10:e0142519PubMedPubMedCentralCrossRefGoogle Scholar
  237. 237.
    Arai F, Miyamoto T, Ohneda O et al (1999) Commitment and differentiation of osteoclast precursor cells by the sequential expression of c-Fms and receptor activator of nuclear factor κb (RANK) receptors. J Exp Med 190:1741–1754PubMedPubMedCentralCrossRefGoogle Scholar
  238. 238.
    Romas E, Sims NA, Hards DK et al (2002) Osteoprotegerin reduces osteoclast numbers and prevents bone erosion in collagen-induced arthritis. Am J Pathol 161:1419–1427PubMedPubMedCentralCrossRefGoogle Scholar
  239. 239.
    Kadow-Romacker A, Hoffmann JE, Duda G et al (2009) Effect of mechanical stimulation on osteoblast- and osteoclast-like cells in vitro. Cells Tissues Organs 190:61–68PubMedCrossRefGoogle Scholar
  240. 240.
    Bentolila V, Boyce TM, Fyhrie DP et al (1998) Intracortical remodelling in adult rat long bones after fatigue loading. Bone 23:275–281PubMedCrossRefGoogle Scholar
  241. 241.
    Mann V, Huber C, Kogianni G et al (2006) The influence of mechanical stimulation on osteocyte apoptosis and bone viability in human trabecular bone. J Musculoskelet Neuronal Interact 6:408–417PubMedPubMedCentralGoogle Scholar
  242. 242.
    Martin RB (2007) Targeted bone remodelling involves BMU steering as well as activation. Bone 40:1574–1580PubMedCrossRefGoogle Scholar
  243. 243.
    Mori S, Burr DB (1993) Increased intracortical remodelling following fatigue damage. Bone 14:103–109PubMedCrossRefPubMedCentralGoogle Scholar
  244. 244.
    Noble BS, Peet N, Stevens HY et al (2003) Mechanical loading: biphasic osteocyte survival and targeting of osteoclasts for bone destruction in rat cortical bone. Am J Physiol 284:934–943CrossRefGoogle Scholar
  245. 245.
    Verborgt O, Tatton NA, Majeska RJ, Schaffler MB (2002) Spatial distribution of Bax and Bcl-2 in osteocytes after bone fatigue: complementary roles in bone remodelling regulation? J Bone Miner Res 17:907–914PubMedCrossRefGoogle Scholar
  246. 246.
    Tan SD, de Vries TJ, Kuijpers-Jagtman AM et al (2007) Osteocytes subjected to fluid flow inhibit osteoclast formation and bone resorption. Bone 41:745–751PubMedCrossRefPubMedCentralGoogle Scholar
  247. 247.
    Tan SD, Bakker AD, Semeins CM et al (2008) Inhibition of osteocyte apoptosis by fluid flow is mediated by nitric oxide. Biochem Biophys Res Commun 369:1150–1154PubMedCrossRefGoogle Scholar
  248. 248.
    Rössig L, Haendeler J, Hermann C et al (2000) Nitric oxide down-regulates MKP-3 mRNA levels. J Biol Chem 275:25502–25507PubMedCrossRefGoogle Scholar
  249. 249.
    Smalt R, Mitchell FT, Howard RL, Chambers TJ (1997) Induction of NO and prostaglandin E2 in osteoblasts by wall-shear stress but not mechanical strain. Am J Physiol 273:751–758Google Scholar
  250. 250.
    Zaman G, Pitsillides AA, Rawlinson SCF et al (1999) Mechanical strain stimulates nitric oxide production by rapid activation of endothelial nitric oxide synthase in osteocytes. J Bone Miner Res 14:1123–1131PubMedCrossRefGoogle Scholar
  251. 251.
    van’T Hof RJ, Ralston SH (2001) Nitric oxide and bone. Immunology 103:255–261CrossRefGoogle Scholar
  252. 252.
    Canalis E, Adams DJ, Boskey A et al (2013) Notch signaling in osteocytes differentially regulates cancellous and cortical bone remodelling. J Biol Chem 288:25614–25625PubMedPubMedCentralCrossRefGoogle Scholar
  253. 253.
    Bullock WA, Pavalko FM, Robling AG (2019) Osteocytes and mechanical loading: the Wnt connection. Orthod Craniofac Res 22:175–179PubMedCrossRefGoogle Scholar
  254. 254.
    Ferraro JT, Daneshmand M, Bizios R, Rizzo V (2004) Depletion of plasma membrane cholesterol dampens hydrostatic pressure and shear stress-induced mechanotransduction pathways in osteoblast cultures. Am J Physiol Cell Physiol 286:831–839CrossRefGoogle Scholar
  255. 255.
    Xing Y, Gu Y, Xu LC et al (2011) Effects of membrane cholesterol depletion and GPI-anchored protein reduction on osteoblastic mechanotransduction. J Cell Physiol 226:2350–2359PubMedPubMedCentralCrossRefGoogle Scholar
  256. 256.
    Klausen TK, Hougaard C, Hoffmann EK, Pedersen SF (2006) Cholesterol modulates the volume-regulated anion current in Ehrlich-Lettre ascites cells via effects on Rho and F-actin. Am J Physiol Cell Physiol 291:757–771CrossRefGoogle Scholar
  257. 257.
    Qi M, Liu Y, Freeman MR, Solomon KR (2009) Cholesterol-regulated stress fibre formation. J Cell Biochem 106:1031–1040PubMedCrossRefGoogle Scholar
  258. 258.
    Dason JS, Smith AJ, Marin L, Charlton MP (2014) Cholesterol and F-actin are required for clustering of recycling synaptic vesicle proteins in the presynaptic plasma membrane. J Physiol 592:621–633PubMedPubMedCentralCrossRefGoogle Scholar
  259. 259.
    Radel C, Rizzo V (2005) Integrin mechanotransduction stimulates caveolin-1 phosphorylation and recruitment of Csk to mediate actin reorganization. Am J Physiol 288:936–945Google Scholar
  260. 260.
    Barczyk M, Carracedo S, Gullberg D (2010) Integrins. Cell Tissue Res 339:269–280PubMedCrossRefGoogle Scholar
  261. 261.
    Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110:673–687PubMedCrossRefGoogle Scholar
  262. 262.
    Nievers MG, Schaapveld RQJ, Sonnenberg A (1999) Biology and function of hemidesmosomes. Matrix Biol 18:5–17PubMedCrossRefGoogle Scholar
  263. 263.
    Matthews BD, Overby DR, Mannix R, Ingber DE (2006) Cellular adaptation to mechanical stress: role of integrins, Rho, cytoskeletal tension and mechanosensitive ion channels. Journal Cell Sci 119:508–518CrossRefGoogle Scholar
  264. 264.
    Bhattacharya R, Gonzalez AM, DeBiase PJ et al (2009) Recruitment of vimentin to the cell surface by β3 integrin and plectin mediates adhesion strength. J Cell Sci 122:1390–1400PubMedPubMedCentralCrossRefGoogle Scholar
  265. 265.
    Cram EJ, Schwarzbauer JE (2004) The talin wags the dog: new insights into integrin activation. Trends Cell Biol 14:55–57PubMedCrossRefGoogle Scholar
  266. 266.
    Brown MC, Perrotta JA, Turner CE (1996) Identification of LIM3 as the principal determinant of paxillin focal adhesion localization and characterization of a novel motif on paxillin directing vinculin and focal adhesion kinase binding. J Cell Biol 135:1109–1123PubMedCrossRefGoogle Scholar
  267. 267.
    Geiger B, Spatz JP, Bershadsky AD (2009) Environmental sensing through focal adhesions. Nature Rev Mol Cell Biol 10:21–33CrossRefGoogle Scholar
  268. 268.
    El-Hoss J, Arabian A, Dedhar S, St-Arnaud R (2014) Inactivation of the integrin-linked kinase (ILK) in osteoblasts increases mineralization. Gene 533:246–252PubMedCrossRefGoogle Scholar
  269. 269.
    Katz B-Z, Zamir E, Bershadsky A et al (2000) Physical state of the extracellular matrix regulates the structure and molecular composition of cell-matrix adhesions. Mol Biol Cell 11:1047–1060PubMedPubMedCentralCrossRefGoogle Scholar
  270. 270.
    Parsons JT (1996) Integrin-mediated signalling: regulation by protein tyrosine kinases and small GTP-binding proteins. Curr Opin Cell Biol 8:146–152PubMedCrossRefGoogle Scholar
  271. 271.
    Teo BKK, Wong ST, Lim CK et al (2013) Nanotopography modulates mechanotransduction of stem cells and induces differentiation through focal adhesion kinase. ACS Nano 7:4785–4798PubMedCrossRefGoogle Scholar
  272. 272.
    Yamada KM, Geiger B (1997) Molecular interactions in cell adhesion complexes. Curr Opin Cell Biol 9:76–85PubMedCrossRefGoogle Scholar
  273. 273.
    Hendesi H, Barbe MF, Safadi FF et al (2015) Integrin mediated adhesion of osteoblasts to connective tissue growth factor (CTGF/CCN2) induces cytoskeleton reorganization and cell differentiation. PLoS ONE 10(2):e0115325PubMedPubMedCentralCrossRefGoogle Scholar
  274. 274.
    Moussa FM, Hisijara IA, Sondag GR et al (2014) Osteoactivin promotes osteoblast adhesion through HSPG and αvβ1 integrin. J Cell Biochem 115:1243–1253PubMedCrossRefGoogle Scholar
  275. 275.
    Saidak Z, Le Henaff C, Azzi S et al (2015) Wnt/β-catenin signaling mediates osteoblast differentiation triggered by peptide-induced α5β1 integrin priming in mesenchymal skeletal cells. J Biol Chem 290:6903–6912PubMedPubMedCentralCrossRefGoogle Scholar
  276. 276.
    Carvalho RS, Schaffer JL, Gerstenfeld LC (1998) Osteoblasts induce osteopontin expression in response to attachment on fibronectin: demonstration of a common role for integrin receptors in the signal transduction processes of cell attachment and mechanical stimulation. J Cell Biochem 70:376–390PubMedCrossRefPubMedCentralGoogle Scholar
  277. 277.
    Riveline D, Zamir E, Balaban NQ et al (2001) Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent mechanism. J Cell Biol 153:1175–1185PubMedPubMedCentralCrossRefGoogle Scholar
  278. 278.
    Carvalho RS, Bumann A, Schaffer JL, Gerstenfeld LC (2002) Predominant integrin ligands expressed by osteoblasts show preferential regulation in response to both cell adhesion and mechanical perturbation. J Cell Biochem 84:497–508PubMedCrossRefPubMedCentralGoogle Scholar
  279. 279.
    Friedland JC, Lee MH, Boettiger D (2009) Mechanically activated integrin switch controls α5β1 function. Science 323:642–644PubMedCrossRefGoogle Scholar
  280. 280.
    Litzenberger JB, Kim JB, Tummala P, Jacobs CR (2010) β1 integrins mediate mechanosensitive signaling pathways in osteocytes. Calcif Tissue Int 86:325–332PubMedPubMedCentralCrossRefGoogle Scholar
  281. 281.
    Litzenberger JB, Tang WJ, Castillo AB, Jacobs CR (2009) Deletion of β1 integrins from cortical osteocytes reduces load-induced bone formation. Cell Mol Bioeng 2:416–424CrossRefGoogle Scholar
  282. 282.
    McNamara LM, Majeska RJ, Weinbaum S et al (2009) Attachment of osteocyte cell processes to the bone matrix. Anat Rec 292:355–363CrossRefGoogle Scholar
  283. 283.
    Phillips JA, Almeida EA, Hill EL et al (2008) Role for β1 integrins in cortical osteocytes during acute musculoskeletal disuse. Matrix Biol 27:609–618PubMedCrossRefGoogle Scholar
  284. 284.
    Thi MM, Suadicani SO, Schaffler MB et al (2013) Mechanosensory responses of osteocytes to physiological forces occur along processes and not cell body and require αVβ3 integrin. Proc Natl Acad Sci USA 110:21012–21017CrossRefGoogle Scholar
  285. 285.
    Haugh MG, Vaughan TJ, McNamara LM (2015) The role of integrin α V β 3 in osteocyte mechanotransduction. J Mech Behav Biomed Mater 42:67–75PubMedCrossRefPubMedCentralGoogle Scholar
  286. 286.
    Cabahug-Zuckerman P, Stout RF Jr et al (2018) Potential role for a specialized β3 integrin-based structure on osteocyte processes in bone mechanosensation. J Orthop Res 36:642–652PubMedGoogle Scholar
  287. 287.
    Pommerenke H, Schmidt C, Durr F et al (2002) The mode of mechanical integrin stressing controls intracellular signaling in osteoblasts. J Bone Miner Res 17:603–611PubMedCrossRefPubMedCentralGoogle Scholar
  288. 288.
    Saunders MM, You J, Trosko JE et al (2001) Gap junctions and fluid flow response in MC3T3-E1 cells. Am J Physiol—Cell Physiol 281:1917–1925CrossRefGoogle Scholar
  289. 289.
    Gillespie PG, Walker RG (2001) Molecular basis of mechanosensory transduction. Nature 413:194–202PubMedCrossRefPubMedCentralGoogle Scholar
  290. 290.
    Kazmierczak P, Sakaguchi H, Tokita J et al (2007) Cadherin 23 and protocadherin 15 interact to form tip-link filaments in sensory hair cells. Nature 449:87–91PubMedCrossRefPubMedCentralGoogle Scholar
  291. 291.
    Marie PJ, Hay E (2013) Cadherins and Wnt signalling: a functional link controlling bone formation. BoneKEy Rep 2:4CrossRefGoogle Scholar
  292. 292.
    Matsuo K, Otaki N (2012) Bone cell interactions through Eph/ephrin: bone modeling, remodelling and associated diseases. Cell Adh Migr 6:148–156PubMedPubMedCentralCrossRefGoogle Scholar
  293. 293.
    Tamma R, Zallone A (2012) Osteoblast and osteoclast crosstalks: from OAF to Ephrin. Inflamm Allergy-Drug Targets 11:196–200PubMedCrossRefPubMedCentralGoogle Scholar
  294. 294.
    Nakajima K, Kho DH, Yanagawa T et al (2016) Galectin-3 in bone tumor microenvironment: a beacon for individual skeletal metastasis management. Cancer Metastasis Rev 35:333–346PubMedPubMedCentralCrossRefGoogle Scholar
  295. 295.
    Vinik Y, Shatz-Azoulay H, Vivanti A et al (2015) The mammalian lectin galectin-8 induces RANKL expression, osteoclastogenesis, and bone mass reduction in mice. Elife 4:e05914PubMedPubMedCentralCrossRefGoogle Scholar
  296. 296.
    Tanikawa R, Tanikawa T, Hirashima M et al (2010) Galectin-9 induces osteoblast differentiation through the CD44/Smad signaling pathway. Biochem Biophys Res Commun 394:317–322PubMedCrossRefGoogle Scholar
  297. 297.
    Flagg-Newton J, Simpson I, Loewenstein WR (1979) Permeability of the cell-to-cell membrane channels in mammalian cell junctions. Science 205:404–407PubMedCrossRefGoogle Scholar
  298. 298.
    Steinberg TH, Civitelli R, Geist ST et al (1994) Connexin43 and connexin45 form gap junctions with different molecular permeabilities in osteoblastic cells. EMBO J 13:744–750PubMedPubMedCentralCrossRefGoogle Scholar
  299. 299.
    Saunders MM, You J, Zhou Z et al (2003) Fluid flow-induced prostaglandin E2 response of osteoblastic ROS 17/2.8 cells is gap junction-mediated and independent of cytosolic calcium. Bone 32:350–356PubMedCrossRefGoogle Scholar
  300. 300.
    Bivi N, Condon KW, Allen MR (2012) Cell autonomous requirement of connexin 43 for osteocyte survival: consequences for endocortical resorption and periosteal bone formation. J Bone Miner Res 27:374–389PubMedPubMedCentralCrossRefGoogle Scholar
  301. 301.
    Delaine-Smith RM, Sittichokechaiwut A, Reilly GC (2014) Primary cilia respond to fluid shear stress and mediate flow-induced calcium deposition in osteoblasts. FASEB J 28:430–439PubMedPubMedCentralCrossRefGoogle Scholar
  302. 302.
    Myers KA, Rattner JB, Shrive NG, Hart DA (2007) Osteoblast-like cells and fluid flow: cytoskeleton-dependent shear sensitivity. Biochem Biophys Res Commun 364:214–219PubMedCrossRefGoogle Scholar
  303. 303.
    Malone AMD, Anderson CT, Tummala P et al (2007) Primary cilia mediate mechanosensing in bone cells by a calcium-independent mechanism. Proc Natl Acad Sci USA. 104:13325–13330CrossRefGoogle Scholar
  304. 304.
    Xiao Z, Zhang S, Mahlios J et al (2006) Cilia-like structures and polycystin-1 in osteoblasts/osteocytes and associated abnormalities in skeletogenesis and Runx2 expression. J Biol Chem 281:30884–30895PubMedPubMedCentralCrossRefGoogle Scholar
  305. 305.
    Leucht P, Monica SD, Temiyasathit S et al (2013) Primary cilia act as mechanosensors during bone healing around an implant. Med Eng Phys 35:392–402PubMedCrossRefGoogle Scholar
  306. 306.
    Chen JC, Hoey DA, Chua M et al (2016) Mechanical signals promote osteogenic fate through a primary cilia-mediated mechanism. FASEB J 30:1504–1511PubMedCrossRefGoogle Scholar
  307. 307.
    Coughlin TR, Voisin M, Schaffler MB et al (2015) Primary cilia exist in a small fraction of cells in trabecular bone and marrow. Calcif Tissue Int 96:65–72PubMedCrossRefGoogle Scholar
  308. 308.
    Smith MA, Hoffman LM, Beckerle MC (2014) LIM proteins in actin cytoskeleton mechanoresponse. Trends Cell Biol 24:575–583PubMedPubMedCentralCrossRefGoogle Scholar
  309. 309.
    Wang N, Ingber DE (1994) Control of cytoskeletal mechanics by extracellular matrix, cell shape, and mechanical tension. Biophys J 66:2181–2189PubMedPubMedCentralCrossRefGoogle Scholar
  310. 310.
    Wang N, Butler JP, Ingber DE (1993) Mechanotransduction across the cell surface and through the cytoskeleton. Science 260:1124–1127PubMedCrossRefGoogle Scholar
  311. 311.
    del Álamo JC, Norwich GN, Yshuan JL et al (2008) Anisotropic rheology and directional mechanotransduction in vascular endothelial cells. Proc Natl Acad Sci USA 105:15411–15416Google Scholar
  312. 312.
    Hu S, Chen J, Fabry B et al (2003) Intracellular stress tomography reveals stress focusing and structural anisotropy in cytoskeleton of living cells. Am J Physiol 285:1082–1090CrossRefGoogle Scholar
  313. 313.
    Silberberg YR, Pelling AE, Yakubov GE et al (2008) Mitochondrial displacements in response to nanomechanical forces. J Mol Recognit 21:30–36PubMedCrossRefGoogle Scholar
  314. 314.
    Koike M, Nojiri H, Ozawa Y et al (2015) Mechanical overloading causes mitochondrial superoxide and SOD2 imbalance in chondrocytes resulting in cartilage degeneration. Sci Rep 5:11722PubMedPubMedCentralCrossRefGoogle Scholar
  315. 315.
    Khatiwala CB, Peyton SR, Putnam AJ (2006) Intrinsic mechanical properties of the extracellular matrix affect the behavior of pre-osteoblastic MC3T3-E1 cells. Am J Physiol Cell Physiol 290:1640–1650CrossRefGoogle Scholar
  316. 316.
    Wen JH, Vincent LG, Fuhrmann A et al (2014) Interplay of matrix stiffness and protein tethering in stem cell differentiation. Nat Mater 13:979–987PubMedPubMedCentralCrossRefGoogle Scholar
  317. 317.
    Ritz U, Götz H, Baranowski A et al (2016) Influence of different calcium phosphate ceramics on growth and differentiation of cells in osteoblast–endothelial co-cultures. J Biomed Mater Res B Appl Biomater 105:1950–1962PubMedCrossRefGoogle Scholar
  318. 318.
    Olivares-Navarrete R, Rodil SE, Hyzy SL et al (2015) Role of integrin subunits in mesenchymal stem cell differentiation and osteoblast maturation on graphitic carbon-coated microstructured surfaces. Biomaterials 51:69–79PubMedPubMedCentralCrossRefGoogle Scholar
  319. 319.
    Fraioli R, Rechenmacher F, Neubauer S et al (2015) Mimicking bone extracellular matrix: Integrin-binding peptidomimetics enhance osteoblast-like cells adhesion, proliferation, and differentiation on titanium. Colloids Surf B 128:191–200CrossRefGoogle Scholar
  320. 320.
    Vatsa A, Breuls RG, Semeins CM et al (2008) Osteocyte morphology in fibula and calvaria—is there a role for mechanosensing? Bone 43:452–458PubMedCrossRefGoogle Scholar
  321. 321.
    Van Hove RP, Nolte PA, Vatsa A et al (2009) Osteocyte morphology in human tibiae of different bone pathologies with different bone mineral density—is there a role for mechanosensing? Bone 45:321–329PubMedCrossRefGoogle Scholar
  322. 322.
    Murshid SA, Kamioka H, Ishihara Y et al (2007) Actin and microtubule cytoskeletons of the processes of 3D-cultured MC3T3-E1 cells and osteocytes. J Bone Miner Metab 25:259CrossRefGoogle Scholar
  323. 323.
    Adachi T, Aonuma Y, Tanaka M et al (2009) Calcium response in single osteocytes to locally applied mechanical stimulus: Differences in cell process and cell body. J Biomech 42:1989–1995PubMedCrossRefGoogle Scholar
  324. 324.
    Sugawara Y, Ando R, Kamioka H et al (2008) The alteration of a mechanical property of bone cells during the process of changing from osteoblasts to osteocytes. Bone 43:19–24PubMedCrossRefGoogle Scholar
  325. 325.
    Prendergast PJ, Huiskes R (1995) The biomechanics of Wolff’s law: recent advances. Ir J Med Sci 164:152–154PubMedCrossRefGoogle Scholar
  326. 326.
    Turner CH (1998) Three rules for bone adaptation to mechanical stimuli. Bone 23:399–407PubMedCrossRefGoogle Scholar
  327. 327.
    Hsieh Y-F, Turner CH (2001) Effects of loading frequency on mechanically induced bone formation. J Bone Miner Res 16:918–924PubMedCrossRefGoogle Scholar
  328. 328.
    Zhu J, Zhang X, Wang C et al (2008) Different magnitudes of tensile strain induce human osteoblasts differentiation associated with the activation of ERK1/2 phosphorylation. Int J Mol Sci 9:2322–2332PubMedPubMedCentralCrossRefGoogle Scholar
  329. 329.
    Mosley JR, March BM, Lynch J, Lanyon LE (1997) Strain magnitude related changes in whole bone architecture in growing rats. Bone 20:191–198PubMedCrossRefGoogle Scholar
  330. 330.
    Cullen DM, Smith RT, Akhter MP (2001) Bone-loading response varies with strain magnitude and cycle number. J Appl Physiol 91:1971–1976PubMedCrossRefGoogle Scholar
  331. 331.
    Rubin CT, Lanyon LE (1984) Regulation of bone formation by applied dynamic loads. J Bone Joint Surg 66:397–402PubMedCrossRefGoogle Scholar
  332. 332.
    Srinivasan S, Ausk BJ, Poliachik SL et al (2007) Rest-inserted loading rapidly amplifies the response of bone to small increases in strain and load cycles. J Appl Physiol 102:1945–1952PubMedCrossRefGoogle Scholar
  333. 333.
    Pereira AF, Shefelbine SJ (2014) The influence of load repetition in bone mechanotransduction using poroelastic finite-element models: the impact of permeability. Biomechan Model Mechanobiol 13:215–225CrossRefGoogle Scholar
  334. 334.
    Stavenschi E, Corrigan MA, Johnson GP et al (2018) Physiological cyclic hydrostatic pressure induces osteogenic lineage commitment of human bone marrow stem cells: a systematic study. Stem Cell Res Ther 9:276PubMedPubMedCentralCrossRefGoogle Scholar
  335. 335.
    Warden SJ, Turner CH (2004) Mechanotransduction in the cortical bone is most efficient at loading frequencies of 5–10 Hz. Bone 34:261–270PubMedCrossRefGoogle Scholar
  336. 336.
    Verbruggen SW, Vaughan TJ, McNamara LM (2014) Fluid flow in the osteocyte mechanical environment: a fluid–structure interaction approach. Biomechan model mechanobiol 13:85–97CrossRefGoogle Scholar
  337. 337.
    Wittig NK, Laugesen M, Birkbak ME et al (2019) Canalicular junctions in the osteocyte lacuno-canalicular network of cortical bone. ACS Nano 13:6421–6430PubMedCrossRefGoogle Scholar
  338. 338.
    Gatti V, Azoulay EM, Fritton SP (2018) Microstructural changes associated with osteoporosis negatively affect loading-induced fluid flow around osteocytes in cortical bone. J Biomech 66:127–136PubMedCrossRefGoogle Scholar
  339. 339.
    Nauli SM, Alenghat FJ, Luo Y et al (2003) Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nature Genet 33:129–137PubMedCrossRefGoogle Scholar
  340. 340.
    Praetorius HA, Frokiaer J, Nielsen S, Spring KR (2003) Bending the primary cilium opens Ca2+-sensitive intermediate-conductance K+ channels in MDCK Cells. J Membr Biol 191:193–200PubMedCrossRefGoogle Scholar
  341. 341.
    Waychunas GA (2014) Disrupting dissolving ions at surfaces with fluid flow. Science 344:1094–1095PubMedCrossRefGoogle Scholar
  342. 342.
    Gross D, Williams WS (1982) Streaming potential and the electromechanical response of physiologically-moist bone. J Biomech 15:277–295PubMedCrossRefGoogle Scholar
  343. 343.
    Frijns A, Huyghe J, Wijlaars M (2005) Measurements of deformations and electrical potentials in a charged porous medium. In: Gladwell GML, Huyghe J, Raats PA, Cowin SC (eds) IUTAM symposium on physicochemical and electromechanical interactions in porous media, vol 125, pp 133–139. Springer, DordrechtGoogle Scholar
  344. 344.
    Hong J, Ko S, Khang G, Mun M (2008) Intraosseous pressure and strain generated potential of cylindrical bone samples in the drained uniaxial condition for various loading rates. J Mater Sci Mater Med 19:2589–2594PubMedCrossRefGoogle Scholar
  345. 345.
    Pienkowski D, Pollack SR (1983) The origin of stress-generated potentials in fluid-saturated bone. J Orthop Res 1:30–41PubMedCrossRefGoogle Scholar
  346. 346.
    Iatridis J, Laible J, Krag M (2003) Influence of fixed charge density magnitude and distribution on the intervertebral disc: applications of a poroelastic and chemical electric (PEACE) model. J Biomech Eng 125:12–24PubMedCrossRefGoogle Scholar
  347. 347.
    Fukada E, Yasuda I (1957) On the piezoelectric effect of bone. J Phys Soc Jpn 12:1158–1162CrossRefGoogle Scholar
  348. 348.
    Elmessiery MA (1981) Physical basis for piezoelectricity of bone matrix. IEE Proc A 128:336–346Google Scholar
  349. 349.
    Halperin C, Mutchnik S, Agronin A et al (2004) Piezoelectric effect in human bones studied in nanometer scale. Nano Lett 4:1253–1256CrossRefGoogle Scholar
  350. 350.
    Marino AA, Becker RO (1974) Piezoelectricity in bone as a function of age. Calcif Tissue Int 14:327–331CrossRefGoogle Scholar
  351. 351.
    Wang T, Feng Z, Song Y, Chen X (2007) Piezoelectric properties of human dentin and some influencing factors. Dent Mater 23:450–453PubMedCrossRefGoogle Scholar
  352. 352.
    Reinish GB, Nowick AS (1975) Piezoelectric properties of bone as functions of moisture content. Nature 253:626–627CrossRefGoogle Scholar
  353. 353.
    Ahn AC, Grodzinsky AJ (2009) Relevance of collagen piezoelectricity to “Wolff’s Law”: a critical review. Med Eng Phys 31:733–741PubMedPubMedCentralCrossRefGoogle Scholar
  354. 354.
    Ramtani S (2008) Electro-mechanics of bone remodelling. Int J Eng Sci 46:1173–1182CrossRefGoogle Scholar
  355. 355.
    Frias C, Reis J, e Silva FC et al (2010) Polymeric piezoelectric actuator substrate for osteoblast mechanical stimulation. J Biomech 43:1061–1066PubMedCrossRefGoogle Scholar
  356. 356.
    Reis J, Frias C, Canto e Castro C, Botelho ML, Marques AT, Simões JA, Capela e Silva F, Potes J (2012) A new piezoelectric actuator induces bone formation in vivo: a preliminary study. BioMed Res Int 613403Google Scholar
  357. 357.
    Zhang Y, Chen L, Zeng J et al (2014) Aligned porous barium titanate/hydroxyapatite composites with high piezoelectric coefficients for bone tissue engineering. Mater Sci Eng C 39:143–149CrossRefGoogle Scholar
  358. 358.
    Liu J, Gu H, Liu Q, Ren L, Li G (2019) An intelligent material for tissue reconstruction: The piezoelectric property of polycaprolactone/barium titanate composites. Mater Lett 236:686–689CrossRefGoogle Scholar
  359. 359.
    Jacob J, More N, Kalia K, Kapusetti G (2018) Piezoelectric smart biomaterials for bone and cartilage tissue engineering. Inflamm Regen 38:2PubMedPubMedCentralCrossRefGoogle Scholar
  360. 360.
    Damaraju SM, Shen Y, Elele E, Khusid B, Eshghinejad A, Li J, Jaffe M, Arinzeh TL (2017) Three-dimensional piezoelectric fibrous scaffolds selectively promote mesenchymal stem cell differentiation. Biomaterials 149:51–62PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Escola de Ciências e TecnologiaUniversidade de ÉvoraÉvoraPortugal

Personalised recommendations