Advertisement

FEM Simulation for a MEMS Vibratory Tuning Fork Gyroscope

  • Vu Van TheEmail author
  • Tran Quang Dung
  • Do Thi Kim Lien
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 104)

Abstract

This paper presents a FEM simulation for a MEMS vibratory tuning fork gyroscope with a connecting diamond-shaped frame. This structure is designed and analyzed using ANSYS software to obtain the dynamic parameters of the proposed tuning fork gyroscope. The resonant frequency of the sensing and driving mode is 11582 Hz and 11605 Hz respectively with 23 Hz mismatch frequency. The equivalent stiffness of the connecting frame in they-direction is determined to be 2360 N/m and the stiffness of the flexible beams in driving and sensing are 858 and 725 N/m, respectively. The response of the proof-mass reflects the input angular velocity. The results will be used to set up in an analytical problem to study the dynamic response of the proposed tuning fork gyroscope in the future works.

Keywords

Tuning forkgyroscope Simulation FEM analysis 

References

  1. 1.
    Yazdi, N., Ayazi, F., Najafi, K.: Micromachined inertial sensors. Proc. IEEE 86, 1640–1659 (1998)CrossRefGoogle Scholar
  2. 2.
    Xia, D., Yu, C., Kong, L.: The development of micromachined gyroscope structure and circuitry technology. Sensors 14, 1394–1473 (2014)CrossRefGoogle Scholar
  3. 3.
    Shkel, A.M.: Type I and type II micromachined vibratory gyroscopes. In: Proceedings of the IEEE/ION PLANS, SanDiego, USA, pp. 586–592 (2006)Google Scholar
  4. 4.
    Acar, C., Shkel, A.M.: MEMS Vibratory Gyroscopes - Structural Approaches to Improve Robustness. Springer (2009)Google Scholar
  5. 5.
    Apostolyuk, V., Tay, F.E.: Dynamics of micromechanical coriolis vibratory gyroscopes. Sens. Lett. 2, 1–8 (2005)Google Scholar
  6. 6.
    Choi, B., Lee, S.-Y., Kim, T., Baek, S.S.: Dynamic characteristics of vertically coupled structures and the design of a decoupled micro-gyroscope. Sensors 8, 3706–3718 (2008)CrossRefGoogle Scholar
  7. 7.
    Guan, Y.W., Gao, S.Q., Liu, H., Jin, L., Niu, S.: Design and vibration sensitivity analysis of a MEMS tuning fork gyroscope with an anchored diamond coupling mechanism. Sensors 16, 468–483 (2016)CrossRefGoogle Scholar
  8. 8.
    Guan, Y., Gao, S., Jin, L., Cao, L.: Design and vibration sensitivity of a MEMS tuning fork gyroscope with anchored coupling mechanism. Microsyst. Technol. 22, 247–254 (2016)CrossRefGoogle Scholar
  9. 9.
    Yoon, S.W., Lee, S., Najafi, K.: Vibration-induced errors in MEMS tuning fork gyroscopes. Sens. Actuators A: Phys. (2012).  https://doi.org/10.1016/j.sna.2012.04.022CrossRefGoogle Scholar
  10. 10.
    Guan, Y., Gao, S., Liu, H., Niu, S.: Acceleration sensitivity of tuning fork gyroscopes: theoretical model, simulation and experimental verification. Microsyst. Technol. 21, 1313–1323 (2014)CrossRefGoogle Scholar
  11. 11.
    Trinh, T.Q., Nguyen, L.Q., Dao, D.V., Chu, H.M., Vu, H.N.: Design and analysis of a z-axis tuning fork gyroscope with guided-mechanical coupling. Microsyst. Technol. 20(2), 281–289 (2014)CrossRefGoogle Scholar
  12. 12.
    Nguyen, M.N., Ha, N.S., Nguyen, L.Q., Chu, H.M., Vu, H.N.: Z-axis micromachined tuning fork gyroscope with low air damping. Micromachines. 8(2), 42 (2017).  https://doi.org/10.3390/mi8020042CrossRefGoogle Scholar
  13. 13.
    Trusov, A.A., Schofield, A.R., Shkel, A.M.: Micromachined rate gyroscope architecture with ultra-high quality factor and improved mode ordering. Sens. Actuators A: Phys. 165(1), 26–34 (2013)CrossRefGoogle Scholar
  14. 14.
    Zaman, M., Sharma, A., Hao, Z., Ayazi, F.: A mode-matched silicon-yaw tuning-fork gyroscope with subdegree-per-hour allan deviation bias instability. J. Microelectromech. Syst. 17(6), 1526–1536 (2008)CrossRefGoogle Scholar
  15. 15.
    Huilin, S., Yongpeng, W.: Modeling and simulation for a vibratory tuning-fork MEMS gyroscope. In: Proceeding of Third International Conference on Measuring Technology and Mechatronics Automation, pp. 605–608 June 2011Google Scholar
  16. 16.
    The, V.V., Dung, T.Q., Trinh, C.D.: Dynamic analysis of a single MEMS vibratory gyroscope with decoupling connection between driving frame and sensing proof mass. Int. J. Appl. Eng. Res. 13(17), 5554–5561 (2018)Google Scholar
  17. 17.
    The, V.V., Dung, T.Q., Hoan, V.M., Trinh, C.D.: Study of dynamic response of a diamond-shaped micro silicon frame. J. Sci. Technol. Mil. Tech. Acad. 186, 34–42 (2017)Google Scholar
  18. 18.
    Allen, J.J.: Microelectromechanical System design. Taylor and Francis Group (2005)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Vu Van The
    • 1
    Email author
  • Tran Quang Dung
    • 1
  • Do Thi Kim Lien
    • 2
  1. 1.Le Quy Don Technical UniversityHanoiVietnam
  2. 2.Viet Hung Industrial UniversityHanoiVietnam

Personalised recommendations