Control Parallel Robots Driven by DC Motors Using Fuzzy Sliding Mode Controller and Optimizing Parameters by Genetic Algorithm

  • Vu Duc VuongEmail author
  • Nguyen Quang Hoang
  • Nguyen Tien Duy
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 104)


Parallel robots are widely used because of many acquired advantages such as rigidity, high accuracy and small dynamic link weight due to their structure as closed-loop multibody systems. However, this also leads to many difficulties in controlling the robot and requires intensive research on robot control strategies and reasonable control factors to ensure optimal control quality. This paper presents the way to control parallel robots driven by DC motors using Fuzzy Sliding Mode Controller and optimizing parameters by genetic algorithm to achieve the best optimized quality control as well as overcome the disadvantages of the basic sliding mode controller. Numerical simulations are carried out on a 3RRR parallel robot model to confirm the feasibility and effectiveness of the proposed method.


Parallel robot Modeling Sliding mode controller Fuzzy sliding mode controller Genetic algorithm 


  1. 1.
    De Jalon, J.G., Bayo, E.: Kinematic and Dynamic Simulation of Multibody Systems: The Real-Time Challenge. Springer, New York (2012)Google Scholar
  2. 2.
    Van Khang, N.: Dynamics of Multibody Systems. Science and Technology Publishing House, HaNoi (2007)Google Scholar
  3. 3.
    Tsai, L.-W.: Robot Analysis: the Mechanics of Serial and Parallel Manipulators. Wiley, Hoboken (1999)Google Scholar
  4. 4.
    Murray, R.M., Li, Z., Sastry, S.S., Sastry, S.S.: A Mathematical Introduction to Robotic Manipulation. CRC Press, Boca Raton (2017)CrossRefGoogle Scholar
  5. 5.
    Angeles, J.: Fundamentals of Robotic Mechanical Systems, vol. 2. Springer, New York (2002)Google Scholar
  6. 6.
    Kane, T.R., Levinson, D.A.: Dynamics. Theory and Applications. McGraw Hill, New York (1985)Google Scholar
  7. 7.
    Shabana, A.A.: Dynamics of Multibody Systems. Cambridge University Press, Cambridge (2013)CrossRefGoogle Scholar
  8. 8.
    Isermann, R.: Adaptive Control Systems (A Short Review). In: Isermann, R. (ed.) Digital Control Systems: Volume 2: Stochastic Control, Multivariable Control, Adaptive Control, Applications, pp. 127–140. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  9. 9.
    Le, Q.D., Kang, H., Le, T.D.: Adaptive extended computed torque control of 3 DOF planar parallel manipulators using neural network and error compensator, vol. 2, pp. 437–448 (2016)CrossRefGoogle Scholar
  10. 10.
    Stepanenko, Y., Su, C.-Y.: Adaptive motion control of rigid-link electrically-driven robot manipulators. In: Proceedings of the 1994 IEEE International Conference on Robotics and Automation, vol. 1, pp. 630–635 (1994)Google Scholar
  11. 11.
    Siciliano, B., Khatib, O.: Springer Handbook of Robotics. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Nguyen-Tuong, D., Peters, J., Seeger, M., Schölkopf, B.: Learning inverse dynamics: a comparison. In: European Symposium on Artificial Neural Networks, no. EPFL-CONF-175477 (2008)Google Scholar
  13. 13.
    Tuan, L.A., Moon, S.-C., Lee, W.G., Lee, S.-G.: Adaptive sliding mode control of overhead cranes with varying cable length. J. Mech. Sci. Technol. 27(3), 885–893 (2013)CrossRefGoogle Scholar
  14. 14.
    Jouini, M., Sassi, M., Amara, N., Sellami, A.: Modeling and control for a 6-DOF platform manipulator. In: 2013 International Conference on Electrical Engineering and Software Applications, pp. 1–5 (2013)Google Scholar
  15. 15.
    Piltan, F., Sulaiman, N., Rashidi, M., Tajpaikar, Z., Ferdosali, P.: Design and implementation of sliding mode algorithm: applied to robot manipulator-a review. Int. J. Robot. Autom. 2(5), 265–282 (2011)Google Scholar
  16. 16.
    Piltan, F., Sulaiman, N.B.: Review of sliding mode control of robotic manipulator. World Appl. Sci. J. 18(12), 1855–1869 (2012)Google Scholar
  17. 17.
    Hoàng, N.Q., Vương, V.Đ., Quyền, N.V.: Mô hình hóa và điều khiển robot song song dẫn động bằng động cơ điện một chiều trong không gian thao tác. In: Hội nghị Khoa học toàn quốc lần thứ 2 về Cơ kỹ thuật và Tự động hóa, pp. 65–72 (2016)Google Scholar
  18. 18.
    Hoang, N.Q., Vuong, V.D., Quyen, N.V.: Modeling and model-based controller design for 3RRR planar parallel robots driven by DC motors in joint space. In: The 4th International Conference on Engineering Mechanics and Automation (ICEMA 4), vol. 4, pp. 114–123 (2016)Google Scholar
  19. 19.
    Hoang, N.Q., Vuong, V.D.: Sliding mode control for a Planar parallel robot driven by electric motors in a task space. J. Comput. Sci. Cybern. 33(4), 325–337 (2017)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Bui, H.-L., Tran, D.-T., Vu, N.-L.: Optimal fuzzy control of an inverted pendulum. J. Vib. Control 18(14), 2097–2110 (2012)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Ross, T.J.: Fuzzy Logic with Engineering Applications. Wiley, Hoboken (2005)Google Scholar
  22. 22.
    Kumar, M., Husian, M., Upreti, N., Gupta, D.: Genetic algorithm: review and application. Int. J. Inf. Technol. Knowl. Manag. 2(2), 451–454 (2010)Google Scholar
  23. 23.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning (1989)Google Scholar
  24. 24.
    El-Mihoub, T.A., Hopgood, A.A., Nolle, L., Battersby, A.: Hybrid genetic algorithms: a review. Eng. Lett. 11, 124–137 (2006)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Vu Duc Vuong
    • 1
    • 2
    Email author
  • Nguyen Quang Hoang
    • 1
  • Nguyen Tien Duy
    • 2
  1. 1.Hanoi University of Science and TechnologyHanoiVietnam
  2. 2.Thai Nguyen University of TechnologyThai NguyenVietnam

Personalised recommendations