Advertisement

Urban Heat Island Effect, Extreme Temperatures and Climate Change: A Case Study of Hong Kong SAR

  • Charles GaldiesEmail author
  • Hok Sin Lau
Chapter
  • 48 Downloads
Part of the Climate Change Management book series (CCM)

Abstract

The Urban Heat Island (UHI) effect is analyzed using LANDSAT8 satellite data acquired on two episodes of heatwaves over Hong Kong and processed using the split-window algorithm to retrieve the Land Surface Temperature (LST) over this area. The in situ ambient air temperatures measured by a number of local weather stations of the Hong Kong Observatory were used to validate the acquired LST. Regional temperature changes for the Hong Kong area for the 21st century generated using the climate scenario generator tool MAGICC/SCENGEN and constrained to SRES A2AIM project a rise in temperatures of between +0.9 and +5.4 °C. The results show the existence of severe UHI effects between urban and sub-urban localities during two severe heatwave events. Geospatial analysis of this local UHI problem quantifies how urban parks can minimize the UHI effect and a number of adaptation measures related to urban spatial planning are being recommended in view of a changing climate.

Keywords

Urban heat island effect Hong Kong Climate projections Climate change heatwaves 

Notes

Acknowledgements

The authors are grateful to Climate Research Unit, University of East Anglia, Norwich, UK and the National Communications Support Program, UNDP/GEF, New York, USA for providing MAGICC/SCENGEN 5.3 code.

References

  1. Ackerman B (1985) Temporal march of the Chicago heat Island. J Clim Appl Meteorol 24(6):547–554CrossRefGoogle Scholar
  2. Arnfield AJ (2003) Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island. Int J Climatol 23(1):1–26CrossRefGoogle Scholar
  3. Baldinelli G, Bonafoni S (2015) Analysis of albedo influence on surface urban heat island by spaceborne detection and airborne thermography. In: Murino V, Puppo E, Sona D, Cristani M, Sansone C (eds) New trends in image analysis and processing—ICIAP 2015 workshops. Springer International Publishing, Genoa, Italy, pp 95–102Google Scholar
  4. Becker F, Li Z-L (1990) Toward a local split window method over land surface. Int J Remote Sens 3:369–393CrossRefGoogle Scholar
  5. Bhatnagar A, Livingston WC (2005) Fundamentals of solar astronomy, vol 6. World ScientificGoogle Scholar
  6. Bonan G (2008) Ecological climatology: concepts and applications, 2nd edn. Cambridge University Press, New YorkCrossRefGoogle Scholar
  7. Chapman S, Watson JEM, Salazar A, McAlpine MTCA (2017) The impact of urbanization and climate change on urban temperatures: a systematic review. Landscape Ecol.  https://doi.org/10.1007/s10980-017-0561-4
  8. Coll C, Caselles V, Valor E, Niclòs R (2012) Comparison between different sources of atmospheric profiles for land surface temperature retrieval from single channel thermal infrared data. Remote Sens Environ 117:199–210CrossRefGoogle Scholar
  9. Corredor X (2018) Cloud Masking Qgis plugin (Version x.x), SMByC-IDEAM and FAO. Available: https://smbyc.bitbucket.io/qgisplugins/cloudmasking. Last accessed Apr 2019
  10. Doick K, Hutchings T (2013) Air temperature regulation by urban trees and green infrastructure. Research Note. Forestry Comission, UK. https://www.forestry.gov.uk/forestresearch. Last accessed 8 Dec 2019
  11. Estoque RC, Murayama Y, Myint SW (2017) Effects of landscape composition and pattern on land surface temperature: an urban heat island study in the megacities of Southeast Asia. Sci Total Environ 577:349–359CrossRefGoogle Scholar
  12. Fang G (2015) Prediction and analysis of urban heat island effect in Dangshan by remote sensing. Int J Smart Sens Intell Syst 8(4):2195–2211Google Scholar
  13. Finkl CW, Makowski C (2014) Remote sensing and modeling: advances in coastal and marine resources, vol 9. Coastal Research Library. SpringerGoogle Scholar
  14. Fordham DA, Wigley TML, Watts MJ, Brook BW (2012) Strengthening forecasts of climate change impacts with multi-model ensemble averaged projections using MAGICC/SCENGEN 5.3. Ecography 35:4–8CrossRefGoogle Scholar
  15. Geiger R, Aron RH, Todhunter P (2012) The climate near the ground. Springer Science and Business Media. ISBN: 3322865827, 9783322865823Google Scholar
  16. Givoni B (1998) Impact of green areas on site and urban climates (chap 9). In: Givoni B (ed) Climate considerations in building and urban design. Wiley, New York, pp 303–330Google Scholar
  17. Gutman G, Ignatov A (1998) The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models. Int J Remote Sens 19:1533–1543CrossRefGoogle Scholar
  18. Hoffmann P, Krueger O, Schluenzen KH (2012) A statistical model for the urban heat island and its application to a climate change scenario. Int J Climatol 32(8):1238–1248CrossRefGoogle Scholar
  19. Hoffmann P, Schluenzen KH (2013) Weather pattern classification to represent the urban heat island in present and future climate. J Appl Meteorol Climatol 52(12):2699–2714CrossRefGoogle Scholar
  20. Hong Kong Observatory (2019). https://www.hko.gov.hk/ Last accessed Apr 2019
  21. Hui YG (2000) The case in Hong Kong. Ageing Int 2000:47CrossRefGoogle Scholar
  22. Honjo T, Takakura T (1990) Simulation of thermal effects of urban green areas on their surrounding areas. Energy Build 15:443–446CrossRefGoogle Scholar
  23. Kikon N, Singh P, Singh SK, Vyas A (2016) Assessment of urban heat islands (UHI) of Noida city, India using multi-temporal satellite data. Sustain Cities Soc 22:19–28CrossRefGoogle Scholar
  24. Kubota T, Lee HS, Trihamdani AR, Phuong TTT, Tanaka T, Matsuo K (2017) Impacts of land use changes from the Hanoi Master Plan 2030 on urban heat islands: part 1. Cooling effects of proposed green strategies. Sustain Cities Soc 32:295–317CrossRefGoogle Scholar
  25. Lee T, Tong H, Chan H (2014) Climate projections for Hong Kong based on IPCC AR5. Hong Kong Observatory. WMO. http://www.wmo.int/pages/prog/wcp/ccl/ccl16/teco/documents/ppt/TECO-Presentations-PDF/02-07-2014/Session9/1200-1220/1-PostPresentation_ClimProj_tclee_HKO.pdf. Last accessed Apr 2019
  26. Loikith PC, Waliser DE, Lee H, Neelin JD, Lintner BR, McGinnis SA, Mearns LO, Kim J (2015) Evaluation of large-scale meteorological patterns associated with temperature extremes in the NARCCAP regional climate model simulations. Clim Dyn 45:3257–3274CrossRefGoogle Scholar
  27. Loue S, Sajatovic M (eds) (2012) Encyclopedia of immigrant health. Springer, BerlinGoogle Scholar
  28. Lubchenco J (2011) National oceanic and atmospheric administration united states department of commerce: What is NOAA? http://www.legislative.noaa.gov/policybriefs/What%20is%20NOAA%202011%20-%20FINAL.pdf. Last accessed Apr 2019
  29. Markert BA, Breure AM, Zechmeister HG (2003) Bioindicators and biomonitors, vol 6. Gulf Professional PublishingGoogle Scholar
  30. McCarthy M, Best M, Betts R, Hendry M (2009) Climate change, cities, and the urban heat island. In: AMS 21st conference on climate variability and change, PhoenixGoogle Scholar
  31. Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao ZC (2007) Global climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the IPCC. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USAGoogle Scholar
  32. Meinshausen M, Raper SCB, Wigley TML (2011a) Emulating coupled atmosphere-ocean and carbon cycle models with a simpler model, MAGICC6—part 1: model description and calibration. Atmos Chem Phys 11:1417–1456.  https://doi.org/10.5194/acp-11-1417-2011CrossRefGoogle Scholar
  33. Meinshausen M, Wigley TML, Raper SCB (2011b) Emulating atmosphere-ocean and carbon cycle models with a simpler model, MAGICC6—part 2: applications. Atmos Chem Phys 11:1457–1471.  https://doi.org/10.5194/acp-11-1457-2011CrossRefGoogle Scholar
  34. Mendelsohn R, Kurukulasuriya P, Basist A, Kogan F, Williams C (2007) Climate analysis with satellite versus weather station data. Clim Change 81:71–83CrossRefGoogle Scholar
  35. Nichol J, Hang TP, Ng E (2014) Temperature projection in a tropical city using remote sensing and dynamic modeling. Clim Dyn 42:2921–2929.  https://doi.org/10.1007/s00382-013-1748-2CrossRefGoogle Scholar
  36. Nichol JE, Hang Pui HT (2012) Temporal characteristics of thermal satellite images for urban heat stress and heat island mapping. ISPRS J Photogrammetry Remote Sens 74:153–162CrossRefGoogle Scholar
  37. Oleson K (2012) Contrasts between urban and rural climate in CCSM4 CMIP5 climate change scenarios. J Clim 25(5):1390–1412CrossRefGoogle Scholar
  38. Oke TR (1979) Review of urban climatology 1973–1976. World Meteorological Organization, GenevaGoogle Scholar
  39. Ongsomwang S, Dasananda S, Prasomsup W (2018) Spatio-temporal urban heat island phenomena assessment using LANDSAT imagery: a case study of Bangkok metropolitan and its vicinity, Thailand. Environ Nat Resour J 16(2):299–344Google Scholar
  40. Qiao Z, Tian T, Zhang L, Xu X (2014) Influences of urban expansion on urban heat island in Beijing during 1989–2010. Adv Meteorol 11Google Scholar
  41. Plocoste T, Jacoby-Koaly S, Molinié J, Petit RH (2014) Urban climate, vol 10, Part 4, pp 745–757.  https://doi.org/10.1016/j.uclim.2014.03.007. Last accessed Apr 2019
  42. Rajeshwari A, Mani ND (2014) Estimation of land surface temperature of Dindigul district using LANDSAT8 data. Int J Res Eng Technol 3(05):122–126CrossRefGoogle Scholar
  43. Rao PK (1972) Remote sensing of urban heat islands from an environmental satellite. Bull Am Meteorol Soc 53:647–648Google Scholar
  44. Roth M (2013) Urban heat islands. In: Fernando HJS (ed) Handbook of environmental fluid dynamics volume 2: systems, pollution, modeling, and measurements. Taylor and Francis Group, New York, pp 143–159Google Scholar
  45. Saito I (1990) Study of the effect of green areas on the thermal environment in an urban area. Energy Build 15:493–498CrossRefGoogle Scholar
  46. Santamouris M, Cartalis C, Synnefa A, Kolokotsa D (2015) On the impact of urban heat island and global warming on the power demand and electricity consumption of buildings—a review. Energy Build 98:119–124.  https://doi.org/10.1016/j.enbuild.2014.09.052CrossRefGoogle Scholar
  47. Santer BD, Wigley TML (2010) Progress in detection and attribution research. In: Schneider SH et al (eds) Climate change science and policy. Island Press, pp 28–43Google Scholar
  48. Santer BD, Wigley TML, Schlesinger ME, Mitchell JFB (1990) Developing climate scenarios from equilibrium GCM results. Max-Planck-Inst. für Meteorologie, Report no. 47Google Scholar
  49. Shashua-Bar L, Tzamir Y, Hoffman ME (2004) Thermal effects of building geometry and spacing on the urban canopy layer microclimate in a hot-humid climate in summer. Int J Climatol 24(13):1729–1742CrossRefGoogle Scholar
  50. Skokovic D, Sobrino JA, Jimenez-Muñoz JC, Soria G, Julien Y, Mattar C, Jordi C (2014) Calibration and validation of land surface temperature for LANDSAT8 TIRS sensor. Land product validation and evolution, ESA/ESRIN Frascati (Italy), pp 6–9Google Scholar
  51. Singh P, Kikon N, Verma P (2017) Impact of land use change and urbanization on urban heat islands in Lucknow city, central India: a remote sensing based estimate. Sustain Cities Soc 32:100–114CrossRefGoogle Scholar
  52. Sobrino JA, Raissouni N (2000) Toward remote sensing methods for land cover dynamic monitoring: application to Morocco. Int J Remote Sens 21(2):353–366CrossRefGoogle Scholar
  53. Sobrino JA, Caselles V, Coll C (1993) Theoretical split-window algorithms for determining the actual surface temperature. Il Nuovo Cimento C 16(3):219–236CrossRefGoogle Scholar
  54. Taha H (1999) Modifying a mesoscale meteorological model to better incorporate urban heat storage: a bulk-parameterization approach. J Appl Meteorol 38:466–473CrossRefGoogle Scholar
  55. Tucker CJ (1979) Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens Environ 8:127–150CrossRefGoogle Scholar
  56. Vera L, Parra CJ, Morales L, Mattar C, Jorquera-Fontena E (2010) Comparative analysis of split-window algorithms for estimating soil temperature. RC Suelo Nutr Veg 10(1):35–39Google Scholar
  57. Voelkel J, Shandas V, Haggerty B (2016) Developing high-resolution descriptions of urban heat islands: a public health imperative. Prev Chronic Dis 13:160099. http://dx.doi.org/10.5888/pcd13.160099
  58. Walawender JP, Szymanowski M, Hajto MJ, Bokwa A (2014) Land surface temperature patterns in the urban agglomeration of Krakow (Poland) derived from landsat-7/ETM+ data. Pure Appl Geophys 171(6):913–940Google Scholar
  59. Wang M, Heb G, Zhang Z, Wang G, Wang Z, Yin R, Cuib S, Wub Z, Cao X (2018) A radiance-based split-window algorithm for land surface temperature retrieval: Theory and application to MODIS data International. Int J Appl Earth Observations Geoinf 76:204–217CrossRefGoogle Scholar
  60. Weng Q, Lu D, Schubring J (2004) Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies. Remote Sens Environ 89(4):467–483CrossRefGoogle Scholar
  61. WMO (2019) https://cpdb.wmo.int/hong-kong-china. Last accessed 8 Dec 2019
  62. Wong JKW, Lau LS-K (2013) From the ‘urban heat island’ to the ‘green island’—a preliminary investigation into the potential of retrofitting green roofs in Mongkok district of Hong Kong. Habitat Int 39:25–35CrossRefGoogle Scholar
  63. World Bank (2019) https://data.worldbank.org/indicator/SP.POP.TOTL?locations=HK. Last accessed 8 Dec 2019
  64. Yan YY (2007) Surface wind characteristics and variability in Hong Kong. Royal Meterological Soc 62(11):312–316Google Scholar
  65. Yao L, Wanga L, Huang X, Zhanga W, Lid J, Niua Z (2018) Interannual variations in surface urban heat island intensity and associated drivers in China. J Environ Manage 222:86–94CrossRefGoogle Scholar
  66. Zhang J, Wang Y, Li Y (2006) A C++ program for retrieving land surface temperature from the data of LANDSAT TM/ETM + band6. Comput Geosci 32(10):1796–1805CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Institute of Earth Systems, University of MaltaMsidaMalta

Personalised recommendations