Advertisement

Flash-Floods: More Often, More Severe, More Damaging? An Analysis of Hydro-geo-environmental Conditions and Anthropogenic Impacts

  • Axel BronstertEmail author
  • Irene Crisologo
  • Maik Heistermann
  • Ugur Ozturk
  • Kristin Vogel
  • Dadiyorto Wendi
Chapter
  • 38 Downloads
Part of the Climate Change Management book series (CCM)

Abstract

In recent years, urban and rural flash floods in Europe and abroad have gained considerable attention because of their sudden occurrence, severe material damages and even danger to life of inhabitants. This contribution addresses questions about possibly changing environmental conditions which might have altered the occurrence frequencies of such events and their consequences. We analyze the following major fields of environmental changes.
  • Altered high intensity rain storm conditions, as a consequence of regional warming;

  • Possibly altered runoff generation conditions in response to high intensity rainfall events;

  • Possibly altered runoff concentration conditions in response to the usage and management of the landscape, such as agricultural, forest practices or rural roads;

  • Effects of engineering measures in the catchment, such as retention basins, check dams, culverts, or river and geomorphological engineering measures.

We take the flash-flood in Braunsbach, SW-Germany, as an example, where a particularly concise flash flood event occurred at the end of May 2016. This extreme cascading natural event led to immense damage in this particular village. The event is retrospectively analyzed with regard to meteorology, hydrology, geomorphology and damage to obtain a quantitative assessment of the processes and their development.

The results show that it was a very rare rainfall event with extreme intensities, which in combination with catchment properties and altered environmental conditions led to extreme runoff, extreme debris flow and immense damages. Due to the complex and interacting processes, no single flood cause can be identified, since only the interplay of those led to such an event. We have shown that environmental changes are important, but—at least for this case study—even natural weather and hydrologic conditions would still have resulted in an extreme flash flood event.

Keywords

Flash flood Climate change Extreme rainfall Anthropogenic impacts 

References

  1. Beven K, Germann P (1982) Macropores and water flow in soils. Water Resour Res 18(5):1311–1325CrossRefGoogle Scholar
  2. Borga M, Anagnoustou EN, Blöschl G, Creutin JD (2011) Flash flood forecasting, warning and risk management: the HYDRATE project. Environ Sci Policy 14(7):834–844Google Scholar
  3. Borga M, Stoffel M, Marchi L, Marra F, Jakob M (2014) Hydrogeomorphic response to extreme rainfall in headwater systems: flash floods and debris flows. J Hydrol 518:194–205CrossRefGoogle Scholar
  4. Bronstert A (1999) Capabilities and limitations of detailed hillslope hydrological modelling. Hydrol Process 13:21–48CrossRefGoogle Scholar
  5. Bronstert A, Bárdossy A (2003) Uncertainty of runoff modeling at the hillslope scale due to temporal variations of rainfall intensity. Phys Chem Earth 28:283–288CrossRefGoogle Scholar
  6. Bronstert A, Niehoff D, Bürger G (2002) Effects of climate and land-use change on storm runoff generation: present knowledge and modelling capabilities. Hydrol Process 16(2):509–529CrossRefGoogle Scholar
  7. Bronstert A, Agarwal A, Boessenkool B, Crisologo I, Fischer M, Heistermann M, Köhn-Reich L, López-Tarazón JA, Moran T, Ozturk U, Reinhardt-Imjela C (2018) Forensic hydro-meteorological analysis of an extreme flash flood: the 2016-05-29 event in Braunsbach, SW-Germany. Sci Total Environ 630:977–991CrossRefGoogle Scholar
  8. Bundesamt für Umwelt (BAFU) (1993) Die Hochwasser 1993 im Wallis und Tessin. Messdaten und ausgesuchte Auswertungen. Mitteilungen des BAFU Nr. 19. Landeshydrologie und -geologie der Schweiz, Bern, 1993, 65 SeitenGoogle Scholar
  9. Bürger G, Heistermann M, Bronstert A (2014) Towards sub-daily rainfall disaggregation via Clausius Clapeyron. J Hydrometeorol 15(3):1303–1311CrossRefGoogle Scholar
  10. Bürger G, Pfister A, Bronstert A (2018) Sub-hourly extreme rainfall scenarios, consistent with Clausius-Clapeyron. (Under review)Google Scholar
  11. Fiener P, Neuhaus P, Botschek J (2013) Long-term trends in rainfall erosivity–analysis of high resolution precipitation time series (1937–2007) from Western Germany. Agric For Meteorol 171–172(2013):115–123CrossRefGoogle Scholar
  12. Hartmann DL, Klein Tank AMG, Rusticucci M, Alexander LV, Brönnimann S, Charabi Y, Dentener FJ, Dlugokencky EJ, Easterling DR, Kaplan A, Soden BJ, Thorne PW, Wild M, Zhai PM (2013) Observations: atmosphere and surface. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University PressGoogle Scholar
  13. Jiménez Cisneros BE, Oki T, Arnell NW, Benito G, Cogley JG, Döll P, Jiang T, Mwakalila SS (2014) Freshwater resources. In: Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. In: Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds) Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, pp 229–269Google Scholar
  14. Jonkman SN (2005) Global perspectives on loss of human life caused by floods. Nat Hazards 34(2):151–175CrossRefGoogle Scholar
  15. Kinze M (2002) Das Augusthochwasser 2002. In: Akademie der Sächsischen Landesstiftung Natur und Umwelt (Hrsg): Aktuelle Hochwasserereignisse und ihre Folgen. Bericht zur wissenschaftlichen Arbeitstagung am 15. und 16. November 2002 in Dresden, pp 13–21Google Scholar
  16. Kron W (2016) Überraschend, tödlich, zerstörerisch: Sturzfluten. Munich Re: Topics Schadenspiegel 2/2016, pp 36–39Google Scholar
  17. Kunz M, Mohr S, Werner P (2016) Niederschlag. In: Brasseur G, Jacob D (Hrsg) Klimawandel in Deutschland, chap 7. Heidelberg, Springer/Spektrum, pp 57–66Google Scholar
  18. Lenderink G, van Meijgaard E (2008) Increase in hourly precipitation extremes beyond expectations from temperature changes. Nat Geosci 1(8):511–514CrossRefGoogle Scholar
  19. Loriaux JM, Lenderink G, De Roode SR, Siebesma AP (2013) Understanding convective extreme precipitation scaling using observations and an entraining plume model. J Atmos Sci 130814132040006.  https://doi.org/10.1175/jas-d-12-0317.1
  20. Marchi L, Borga M, Preciso E, Gaume E (2010) Characterisation of selected extreme flash floods in Europe and implications for flood risk management. J Hydrol 394(1–2):118–133CrossRefGoogle Scholar
  21. Mayerhofer C, Meissl G, Klebinder K, Kohl B, Markart G (2017) Comparison of the results of a small-plot and a large-plot rainfall simulator—effects of land use and land cover on surface runoff in Alpine catchments. CATENA 156:184–196CrossRefGoogle Scholar
  22. Müller EN, Pfister A (2011) Increasing occurrence of high-intensity rainstorm events relevant for the generation of soil erosion in a temperate lowland region in Central Europe. J Hydrol 411:266–278CrossRefGoogle Scholar
  23. Niehoff D (2002) Modellierung des Einflusses der Landnutzung auf die Hochwasserentstehung in der Mesoskala. Brandenburgische Umweltberichte, 11. http://opus.kobv.de/ubp/volltexte/2005/398/pdf/vol11.pdf
  24. Niehoff D, Bronstert A (2001) Influences of land-use and land-surface conditions on flood generation: a simulation study. In: Marsalek J et al (eds) Advances in urban stormwater and agricultural source controls. NATO science series IV. Earth and environmental sciences. Kluwer Academic Publishers, pp 267–278Google Scholar
  25. Niehoff D, Fritsch U, Bronstert A (2002) Land-use impacts on storm-runoff generation: scenarios of land-use change and simulation of hydrological response in a meso-scale catchment in SW-Germany. J Hydrol 267(1–2):80–93CrossRefGoogle Scholar
  26. NRW (2010) ExUS Extremwertstatistische Untersuchungen von Starkregen in Nordrhein-Westfalen, aqua_plan GmbH, hydro & meteo GmbH & Co. KG und dr. papadakis GmbHGoogle Scholar
  27. Salazar S, Francés F, Komma J, Blume T, Franke T, Bronstert A, Blöschl G (2012) A comparative analysis of the effectiveness of flood management measures based on the concept of retaining water in the landscape in different European hydro-climatic regions. Nat Hazards Earth Syst Sci 12:3287–3306CrossRefGoogle Scholar
  28. Scherrer S, Naef F, Faeh AO, Cordery I (2007) Formation of runoff at the hillslope scale during intense precipitation. Hydrol Earth Syst Sci 11(2):907–922.  https://doi.org/10.5194/hess-11-907-2007CrossRefGoogle Scholar
  29. Schulla J (1997) Hydrologische Modellierung von Flußgebieten zur Abschätzung der Folgen von Klimaänderungen. Zürcher Geographische Schriften, Heft 69. ZürichGoogle Scholar
  30. Vogel K, Öztürk U, Riemer A, Laudan J, Sieg T, Wendi D, Agarwal A, Rözer V, Korup O, Thieken A (2017) Die Sturzflut von Braunsbach am 29. Mai 2016 - Entstehung, Ablauf und Schäden eines „Jahrhundertereignisses“. 2. Geomorphologische Prozesse und Schadensanalyse. Hydrologie und Wasserbewirtschaftung 61(3):163–175Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Axel Bronstert
    • 1
    Email author
  • Irene Crisologo
    • 1
  • Maik Heistermann
    • 1
  • Ugur Ozturk
    • 1
  • Kristin Vogel
    • 1
  • Dadiyorto Wendi
    • 1
  1. 1.University of PotsdamPotsdam-GolmGermany

Personalised recommendations