Advertisement

A Spatial Analysis Framework to Assess Responses of Agricultural Landscapes to Climates and Soils at Regional Scale

  • Edmar TeixeiraEmail author
  • Anne-Gaelle Ausseil
  • Eric Burgueño
  • Hamish Brown
  • Rogerio Cichota
  • Marcus Davy
  • Frank Ewert
  • Jing Guo
  • Allister Holmes
  • Dean Holzworth
  • Wei Hu
  • John de Ruiter
  • Ellen Hume
  • Linley Jesson
  • Paul Johnstone
  • John Powell
  • Kurt Christian Kersebaum
  • Hymmi Kong
  • Jian Liu
  • Linda Lilburne
  • Sathiyamoorthy Meiyalaghan
  • Roy Storey
  • Kate Richards
  • Andrew Tait
  • Tony van der Weerden
Chapter
  • 49 Downloads
Part of the Innovations in Landscape Research book series (ILR)

Abstract

This chapter describes the structure, datasets and processing methods of a new spatial analysis framework to assess the response of agricultural landscapes to climates and soils. Georeferenced gridded information on climate (historical and climate change scenarios), soils, terrain and crop management are dynamically integrated by a process-based biophysical model within a high-performance computing environment. The framework is used as a research tool to quantify productivity and environmental aspects of agricultural systems. An application case study using New Zealand spatial datasets and silage maize cropping systems illustrates the current framework capability and highlights key areas for enhancement in future gridded modelling research.

Keywords

APSIM Climate change Crop GIS Modelling 

Notes

Acknowledgements

This work was completed under Plant & Food Research’s Discovery Science project “Spatial modelling of crops under climate change” (DS17-19) and Sustainable Agro-Ecosystems (SAE) programme, both funded from the Strategic Science Investment Fund. Additional funding was provided as an output for the Suitability programme of the Our Land and Water and Deep South National Science Challenges (Ministry of Business, Innovation and Employment contracts C10X1507 and C01X1445).

References

  1. Brown H, Huth N, Holzworth D (2018) Crop model improvement in APSIM: using wheat as a case study. Eur J Agron 100:141–150.  https://doi.org/10.1016/j.eja.2018.02.002CrossRefGoogle Scholar
  2. Ewert F, Rötter RP, Bindi M, Webber H, Trnka M, Kersebaum KC, Olesen JE, van Ittersum, MK, Janssen S, Rivington M, Semenov MA, Wallach D, Porter JR, Stewart D, Verhagen J, Gaiser T, Palosuo T, Tao F, Nendel C, Roggero PP, Bartošová L, Asseng S (2015a) Crop modelling for integrated assessment of risk to food production from climate change. Environ Model Softw 287–303. http://dx.doi.org/10.1016/j.envsoft.2014.12.003
  3. Ewert F, van Bussel L, Zhao G, Hoffmann H, Gaiser T, Specka X, Kurt-Christian K, Sosa C, Lewan E, Yeluripati J, Kuhnert M, Tao F, Roetter R, Constantin J, Raynal H, Wallach D, Teixeira EI, Grosz B, Bach M, Doro L, Roggero PP, Zhao Z, Wang E, Kiese R, Haas E, Eckersten H, Trombi G, Bindi M, Klein C, Biernath C, Heinlein F, Priesack E, Cammarano D, Asseng S, Elliott J, Glotter M, Basso B, Baigorria GA, Romero CC, Moriondo M (2015b) Uncertainties in scaling up crop models for large area climate change impact assessments. In: Rosenzweig C, Hillel D (eds) Handbook of climate change and agroecosystems: the agricultural model intercomparison and improvement project (AgMIP)Google Scholar
  4. Gaydon DS, Singh Balwinder, Wang E, Poulton PL, Ahmad B, Ahmed F, Akhter S, Ali I, Amarasingha R, Chaki AK, Chen C, Choudhury BU, Darai R, Das A, Hochman Z, Horan H, Hosang EY, Kumar PV, Khan ASMMR, Laing AM, Liu L, Malaviachichi MAPWK, Mohapatra KP, Muttaleb MA, Power B, Radanielson AM, Rai GS, Rashid MH, Rathanayake WMUK, Sarker MMR, Sena DR, Shamim M, Subash N, Suriadi A, Suriyagoda LDB, Wang G, Wang J, Yadav RK, Roth CH (2017) Evaluation of the APSIM model in cropping systems of Asia. Field Crops Res 204:52–75.  https://doi.org/10.1016/j.fcr.2016.12.015CrossRefGoogle Scholar
  5. Grosz B, Dechow R, Gebbert S, Hoffmann H, Zhao G, Constantin J, Raynal H, Wallach D, Coucheney E, Lewan E, Eckersten H, Specka X, Kersebaum K-C, Nendel C, Kuhnert M, Yeluripati J, Haas E, Teixeira E, Bindi M, Trombi G, Moriondo M, Doro L, Roggero PP, Zhao Z, Wang E, Tao F, Rötter R, Kassie B, Cammarano D, Asseng S, Weihermüller L, Siebert S, Gaiser T, Ewert F (2017) The implication of input data aggregation on up-scaling soil organic carbon changes. Environ Model Softw 96.  https://doi.org/10.1016/j.envsoft.2017.06.046
  6. Hoffmann H, Zhao G, Specka X, Nendel C, Kersebaum KC, Sosa C, Lewan E, Eckersten H, Yeluripati J, Kuhnert M, Tao F, Rötter R (2014) Effects of climate input data aggregation on modelling regional crop yields. In: FACCE MACSUR mid-term scientific conference, April 1–3 (+ 4), 2014, University of Sassari, Sardinia, ItalyGoogle Scholar
  7. Holzworth D, Huth NI, Fainges J, Brown H, Zurcher E, Cichota R, Verrall S, Herrmann NI, Zheng B, Snow V (2018) APSIM next generation: overcoming challenges in modernising a farming systems model. Environ Model Softw 103:43–51.  https://doi.org/10.1016/j.envsoft.2018.02.002CrossRefGoogle Scholar
  8. Holzworth DP, Huth NI, deVoil PG, Zurcher EJ, Herrmann NI, McLean G, Chenu K, van Oosterom EJ, Snow V, Murphy C, Moore AD, Brown H, Whish JPM, Verrall S, Fainges J, Bell LW, Peake AS, Poulton PL, Hochman Z, Thorburn PJ, Gaydon DS, Dalgliesh NP, Rodriguez D, Cox H, Chapman S, Doherty A, Teixeira E, Sharp J, Cichota R, Vogeler I, Li FY, Wang E, Hammer GL, Robertson MJ, Dimes JP, Whitbread AM, Hunt J, van Rees H, McClelland T, Carberry PS, Hargreaves JNG, MacLeod N, McDonald C, Harsdorf J, Wedgwood S, Keating BA (2014) APSIM—evolution towards a new generation of agricultural systems simulation. Environ Model Softw 62.  https://doi.org/10.1016/j.env-soft.2014.07.009
  9. Khaembah EN, Brown HE, Zyskowski R, Chakwizira E, de Ruiter JM, Teixeira EI (2017) Development of a fodder beet potential yield model in the next generation APSIM. Agric Syst 15.  https://doi.org/10.1016/j.agsy.2017.08.005
  10. Lilburne L, Hewitt A, Webb TH, Carrick S (2004) S-map—a new soil database for New Zealand. Reg Inst Online PublGoogle Scholar
  11. LRIS-Portal (2019) LRIS-Portal [WWW Document]. lris.scinfo.org.nz/data/. Accessed 15 Jan 2019
  12. Meinshausen M, Smith SJ, Calvin K, Daniel JS, Kainuma MLT, Lamarque JF, Matsumoto K, Montzka SA, Raper SCB, Riahi K, Thomson A, Velders GJM, van Vuuren DPP (2011) The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim Change 109:213.  https://doi.org/10.1007/s10584-011-0156-zCrossRefGoogle Scholar
  13. MFE (2018) No Title [WWW Document]. New Zealand’s Greenh. Gas Invent. http://www.mfe.govt.nz/climate-change/state-of-our-atmosphere-and-climate/new-zealands-greenhouse-gas-inventory. Accessed 2 Jan 2019
  14. Müller C, Elliott J, Chryssanthacopoulos J, Arneth A, Balkovic J, Ciais P, Deryng D, Folberth C, Glotter M, Hoek S, Iizumi T, Izaurralde RC, Jones C, Khabarov N, Lawrence P, Liu W, Olin S, Pugh TAM, Ray DK, Reddy A, Rosenzweig C, Ruane AC, Sakurai G, Schmid E, Skalsky R, Song CX, Wang X, de Wit A, Yang H (2017) Global gridded crop model evaluation: benchmarking, skills, deficiencies and implications. Geosci Model Dev 10:1403–1422.  https://doi.org/10.5194/gmd-10-1403-2017CrossRefGoogle Scholar
  15. NIWA (2019) No Title [WWW Document]. www.niwa.co.nz/climate/our-services/virtual-climate-stations. Accessed 15 Jan 2019
  16. Probert ME, Dimes JP, Keating BA, Dalal RC, Strong WM (1998) APSIM’s water and nitrogen modules and simulation of the dynamics of water and nitrogen in fallow systems. Agric Syst 56:1–28.  https://doi.org/10.1016/S0308-521X(97)00028-0CrossRefGoogle Scholar
  17. R-Shiny (2019) No Title [WWW Document], 15 Jan 2019Google Scholar
  18. R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, AustriaGoogle Scholar
  19. Rodríguez A, Ruiz-Ramos M, Palosuo T, Carter TR, Fronzek S, Lorite IJ, Ferrise R, Pirttioja N, Bindi M, Baranowski P, Buis S, Cammarano D, Chen Y, Dumont B, Ewert F, Gaiser T, Hlavinka P, Hoffmann H, Höhn JG, Jurecka F, Kersebaum KC, Krzyszczak J, Lana M, Mechiche-Alami A, Minet J, Montesino M, Nendel C, Porter JR, Ruget F, Semenov MA, Steinmetz Z, Stratonovitch P, Supit I, Tao F, Trnka M, de Wit A, Rötter RP (2019) Implications of crop model ensemble size and composition for estimates of adaptation effects and agreement of recommendations. Agric For Meteorol 264:351–362.  https://doi.org/10.1016/j.agrformet.2018.09.018CrossRefPubMedPubMedCentralGoogle Scholar
  20. Rosenzweig C, Jones JW, Hatfield JL, Ruane AC, Boote KJ, Thorburn P, Antle JM, Nelson GC, Porter C, Janssen S, Asseng S, Basso B, Ewert F, Wallach D, Baigorria G, Winter JM (2013) The agricultural model intercomparison and improvement project (AgMIP): protocols and pilot studies. Agric For Meteorol 170:166–182.  https://doi.org/10.1016/j.agrformet.2012.09.011CrossRefGoogle Scholar
  21. Rutledge D, Ausseil A-G, Baisden T, Bodeker G, Booker D, Cameron M, Collins D, Daigneault A, Fernandez, Frame B, Keller E, Kremser S, Kirschbaum M, Lewis J, Mullan B, Reisinger A. Sood A, Stuart S, Tait A, Teixeira E, Timar L, Zammit C (2017) Identifying feedbacks, understanding cumulative impacts and recognising limits: a national integrated assessment. Synthesis Report RA3. Climate changes, impacts and implications for New Zealand to 2100. MBIE contract C01X1225Google Scholar
  22. S-Map (2019) No Title [WWW Document]. smap.landcareresearch.co.nz/
  23. Sood A (2015) Improved bias corrected and downscaled regional climate model data for climate impact studies: validation and assessment for New Zealand. UnpublishedGoogle Scholar
  24. Stats-NZ (2017) No Title [WWW Document]. National accounts (industry production and investment) year end, Mar 2017. https://www.stats.govt.nz/information-releases/national-accounts-industry-production-and-investment-year-ended-march-2017. Accessed 2 Jan 2019
  25. Tait A, Sood A, Mullan B, Stuart S, Bodeker G, Kremser S, Lewis J (2016) Updated climate change projections for New Zealand for use in impact studies. Synthesis Report RA1. Climate changes, impacts and implications (CCII) for New Zealand to 2100. MBIE contract C01X1225 18Google Scholar
  26. Teixeira EI, Zhao G, Ruiter JD, Brown H, Ausseil A-G, Meenken E, Ewert F (2016) The interactions between genotype, management and environment in regional crop modelling. Eur J Agron.  https://doi.org/10.1016/j.eja.2016.05.005
  27. Vanuytrecht E, Raes D, Willems P (2016) Regional and global climate projections increase mid-century yield variability and crop productivity in Belgium. Reg Environ Change 16:659–672.  https://doi.org/10.1007/s10113-015-0773-6CrossRefGoogle Scholar
  28. Wallach D, Thorburn PJ (2017) Estimating uncertainty in crop model predictions: current situation and future prospects. Eur J Agron 88:A1–A7.  https://doi.org/10.1016/j.eja.2017.06.001CrossRefGoogle Scholar
  29. Webb TH, Lilburne LR (2011) Criteria for defining the soil family and soil sibling. The fourth and fifth categories of the New Zealand soil classification. Landcare research science series, no 3, 2nd edn. http://digitallibrary.landcareresearch.co.nz/cdm/ref/collection/p20022co
  30. Zhao G, Hoffmann H, Yeluripati J, Specka X, Nendel C, Coucheney E, Kuhnert M, Tao F, Constantin J, Raynal H, Teixeira E, Grosz B, Doro L, Kiese R, Eckersten H, Haas E, Cammarano D, Kassie B, Moriondo M, Trombi G, Bindi M, Biernath C, Heinlein F, Klein C, Priesack E, Lewan E, Kersebaum KC, Rötter R, Roggero PPPP, Wallach D, Asseng S, Siebert S, Gaiser T, Ewert F (2016) Evaluating the precision of eight spatial sampling schemes in estimating regional means of simulated yield for two crops. Environ Model Softw 80:100–112.  https://doi.org/10.1016/j.envsoft.2016.02.022CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Edmar Teixeira
    • 1
    Email author
  • Anne-Gaelle Ausseil
    • 2
  • Eric Burgueño
    • 1
  • Hamish Brown
    • 1
  • Rogerio Cichota
    • 1
  • Marcus Davy
    • 1
  • Frank Ewert
    • 5
  • Jing Guo
    • 2
  • Allister Holmes
    • 4
  • Dean Holzworth
    • 6
  • Wei Hu
    • 1
  • John de Ruiter
    • 1
  • Ellen Hume
    • 1
  • Linley Jesson
    • 1
  • Paul Johnstone
    • 1
  • John Powell
    • 3
  • Kurt Christian Kersebaum
    • 5
  • Hymmi Kong
    • 1
  • Jian Liu
    • 1
  • Linda Lilburne
    • 2
  • Sathiyamoorthy Meiyalaghan
    • 1
  • Roy Storey
    • 1
  • Kate Richards
    • 1
  • Andrew Tait
    • 3
  • Tony van der Weerden
    • 7
  1. 1.New Zealand Institute for Plant & Food Research LimitedLincolnNew Zealand
  2. 2.Manaaki Whenua - Landcare ResearchWellingtonNew Zealand
  3. 3.National Institute of Water and Atmospheric Research (NIWA)WellingtonNew Zealand
  4. 4.Foundation for Arable Research (FAR)ChristchurchNew Zealand
  5. 5.Leibniz Centre for Agricultural Landscape Research (ZALF)MünchebergGermany
  6. 6.Commonwealth Scientific and Industrial Research Organisation (CSIRO)ToowoombaAustralia
  7. 7.AgResearchHamiltonNew Zealand

Personalised recommendations