Advertisement

Dynamics of Soil Organic Matter in Agricultural Landscapes

  • Uwe FrankoEmail author
  • Felix Witing
Chapter
  • 47 Downloads
Part of the Innovations in Landscape Research book series (ILR)

Abstract

Soil organic matter is an essential key in the functioning of soils and landscapes. Not only because of its importance as a carbon sink for the mitigation of climate change but also to recommend farmers sustainable soil management, the modelling of organic matter turnover is a well-integrated part of soil science. This article provides a short review of modelling approaches for carbon and nitrogen fluxes related to organic matter turnover with an example at landscape scale where beside dedicated process simulation indicators are helpful tools to assess changes in land management. This is explained in more detail for the development of biogas production and its feedbacks to soil organic matter.

Keywords

Soil organic matter (SOM) SOM turnover Biological active time Organic nitrogen turnover Modelling SOM dynamics Climate change SOM in agricultural landscapes 

References

  1. Brock C, Franko U, Oberholzer HR, Kuka K, Leithold G, Kolbe J, Reinhold J (2013) Humus balancing in Central Europe–concepts, state of the art, and perspectives review article. J Plant Nutr Soil Sci 176:3–11CrossRefGoogle Scholar
  2. Daniel-Gromke J, Rensberg N, Denysenko V, Trommler M, Reinholz T, Völler K, Beil M, Beyrich W (2017) Anlagenbestand Biogas und Biomethan – Biogaserzeugung und -nutzung in Deutschland., DBFZ Report Nr. 30., DBFZ - Deutsches Biomasseforschungszentrum, LeipzigGoogle Scholar
  3. Daniel-Gromke J, Rensberg N, Denysenko V, Stinner W, Schmalfuß T, Scheftelowitz M, Nelles M, Liebetrau J (2018) Current developments in production and utilization of biogas and biomethane in Germany. Chem Ing Tec 90(1–2):1–20Google Scholar
  4. Davies JAC, Tipping E, Whitmore AP (2016) 150 years of macronutrient change in unfertilized UK ecosystems: observations versus simulations. Sci Total Environ 572:1485–1495CrossRefGoogle Scholar
  5. Falloon P, Smith P, Coleman K, Marshall S (1998) Estimating the size of the inert organic matter pool from total soil organic carbon content for use in the Rothamsted carbon model. Soil Biol Biochem 30(8–9):1207–1211CrossRefGoogle Scholar
  6. Franko U (1997) Modellierung des Umsatzes der organischen Bodensubstanz. Arch Acker- Pfl Boden 41:527–547Google Scholar
  7. Franko U, Kolbe H, Thiel E, Ließ E (2011) Multi-site validation of a soil organic matter model for arable fields based on generally available input data. Geoderma 166:119–134CrossRefGoogle Scholar
  8. Franko U, Merbach I (2017) Modelling soil organic matter dynamics on a bare fallow Chernozem soil in Central Germany. Geoderma 303:93–98CrossRefGoogle Scholar
  9. Franko U, Oelschlägel B (1995) Einfluss von Klima und Textur auf die biologische Aktivität beim Umsatz der organischen Bodensubstanz. Arch Agron Soil Sci 39(3):155–163CrossRefGoogle Scholar
  10. Franko U, Oelschlägel B, Schenk S (1995) Simulation of temperature-, water- and nitrogen dynamics using the model CANDY. Ecol Model 81(1–3):213–222CrossRefGoogle Scholar
  11. Franko U, Spiegel H (2016) Modeling soil organic carbon dynamics in an Austrian long-term tillage field experiment. Soil Tillage Res 156:83–90CrossRefGoogle Scholar
  12. Franko U, Witing F, Jäckel G, Volk M (2015) Large-scale identification of hot spots for soil carbon demand under climate change and bioenergy production. J Plant Nutr Soil Sci 178:199–208CrossRefGoogle Scholar
  13. Kallenbach CM, Frey SD, Grandy AS (2016) direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls. Nat Commun 7:13630–13630CrossRefGoogle Scholar
  14. Körschens M, Weigel A, Schulz E (1998) Turnover of soil organic matter (SOM) and long-term balances—tools for evaluating sustainable productivity of soils. Zeitschrift für Pflanzenernährung und Bodenkunde 161(4):409–424CrossRefGoogle Scholar
  15. Kuka K, Franko U, Rühlmann J (2007) Modelling the impact of pore space distribution on carbon turnover. Ecol Model 208(2):295–306Google Scholar
  16. Ondrasek G, Bakić Begić H, Zovko M, Filipović L, Meriño-Gergichevich C, Savić R, Rengel Z (2019) Biogeochemistry of soil organic matter in agroecosystems & environmental implications. Sci Total Environ 658:1559–1573CrossRefGoogle Scholar
  17. Paul EA (1984) Dynamics of organic matter in soils. Plant Soil 76(1):275–285CrossRefGoogle Scholar
  18. Paul EA (2016) the nature and dynamics of soil organic matter: plant inputs, microbial transformations, and organic matter stabilization. Soil Biol Biochem 98:109–126CrossRefGoogle Scholar
  19. Prays N, Dominik P, Sänger A, Franko U (2018) Biogas residue parameterization for soil organic matter modeling. PLoS ONE 13(10):e0204121CrossRefGoogle Scholar
  20. Rühlmann J (1999) A new approach to estimating the pool of stable organic matter in soil using data from long-term field experiments. Plant Soil 213(1):149–160CrossRefGoogle Scholar
  21. Smith P, Lutfalla S, Riley WJ, Torn MS, Schmidt MWI, Soussana JF (2018) The changing faces of soil organic matter research. Eur J Soil Sci 69:23–30CrossRefGoogle Scholar
  22. Stockmann U, Adams MA, Crawford JW, Field DJ, Henakaarchchi N, Jenkins M, Minasny B, McBratney AB, Courcelles VdRd, Singh K, Wheeler I, Abbott L, Angers DA, Baldock J, Bird M, Brookes PC, Chenu C, Jastrow JD, Lal R, Lehmann J, O’Donnell AG, Parton WJ, Whitehead D, Zimmermann M (2013) The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agr Ecosyst Environ 164:80–99CrossRefGoogle Scholar
  23. Stockmann U, Padarian J, McBratney A, Minasny B, de Brogniez D, Montanarella L, Hong SY, Rawlins BG, Field DJ (2015) Global soil organic carbon assessment. Global Food Secur 6:9–16CrossRefGoogle Scholar
  24. von Lützow M, Kögel-Knabner I, Ludwig B, Matzner E, Flessa H, Ekschmitt K, Guggenberger G, Marschner B, Kalbitz K (2008) Stabilization mechanisms of organic matter in four temperate soils: development and application of a conceptual model. J Plant Nutr Soil Sci 171(1):111–124CrossRefGoogle Scholar
  25. Wiesmeier M, Urbanski L, Hobley E, Lang B, von Lützow M, Marin-Spiotta E, van Wesemael B, Rabot E, Ließ M, Garcia-Franco N, Wollschläger U, Vogel HJ, Kögel-Knabner I (2019) Soil organic carbon storage as a key function of soils—a review of drivers and indicators at various scales. Geoderma 333:149–162CrossRefGoogle Scholar
  26. Witing F, Franko U, Gebel M (2016) Regionale Humus- und Nährstoffdynamik - Dynamische Bilanzierung von Humushaushalt und Nährstoffaustrag im regionalen Maßstab im Kontext von Landnutzungs- und Klimawandel. Sächsisches Landesamt für Umwelt, Landwirtschaft und Geologie, Schriftenreihe, Heft 20/2016: 99 S. Dresden, GermanyGoogle Scholar
  27. Witing F, Prays N, O’Keeffe S, Gründling R, Gebel M, Kurzer HJ, Daniel-Gromke J, Franko U (2018) Biogas production and changes in soil carbon input—a regional analysis. Geoderma 320:105–114CrossRefGoogle Scholar
  28. Witing F, Gebel M, Kurzer HJ, Friese H, Franko U (2019) Large-scale integrated assessment of soil carbon and organic matter-related nitrogen fluxes in Saxony (Germany). J Environ Manag 237:272–280CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Soil System ScienceUFZ—Helmholtz Centre for Environmental ResearchHalleGermany
  2. 2.Department of Computational Landscape EcologyUFZ—Helmholtz Centre for Environmental ResearchLeipzigGermany

Personalised recommendations