Advertisement

Nanotoxicity, Cytotoxicity, and Genotoxicity Mechanisms of Nanomaterials

  • Loutfy H. MadkourEmail author
Chapter
Part of the Nanomedicine and Nanotoxicology book series (NANOMED)

Abstract

There are many points of intersection between nanoscience and nanotechnology and the biological sciences. A recent trend in nanotechnology has been to investigate the interactions of nanomaterials with biological systems, known as nano-bio-interactions. The significance of these studies is the identification and establishment of design rules that govern the engineering of nanodevices. Nanotechnology and biotechnology will coalesce to produce nanoscale systems and devices that use biological principles, since many of the components of cells are already constructed on the nanoscale level (i.e., 0.1–100 nm in diameter). Humans may be exposed to nanomaterials through inhalation (respiratory tract), skin contact, ingestion, and injection (blood circulation). The unique chemical and biological properties of nanomaterials make them useful in many products for humans. Although the unique properties of nanomaterials have resulted in an exponential increase in their use, cytotoxic and genotoxic data for most manufactured nanomaterials have not been published at a correspondingly high rate.

Keywords

Nanomaterials Particulate matter Nanotoxicity ROS Cell damage 

References

  1. Abimannan T, Peroumal D, Parida JR, Barik PK, Padhan P, Devadas S (2016) Oxidative stress modulates the cytokine response of differentiated Th17 and Th1 cells. Free Radic Biol Med 99:352–363.  https://doi.org/10.1016/j.freeradbiomed.2016.08.026CrossRefGoogle Scholar
  2. Adamson IY, Prieditis H, Hedgecock C, Vincent R (2000) Zinc is the toxic factor in the lung response to an atmospheric particulate sample. Toxicol Appl Pharmacol 166(2):111–119CrossRefGoogle Scholar
  3. Aguilera-Aguirre L, Bacsi A, Radak Z, Hazra TK, Mitra S, Sur S, Brasier AR, Ba X, Boldogh I (2014) Innate inflammation induced by the 8-oxoguanine DNA glycosylase-1–KRAS–NF-κB pathway. J Immunol 193:4643–4653.  https://doi.org/10.4049/jimmunol.1401625CrossRefGoogle Scholar
  4. Akhtar MJ, Ahamed M, Kumar S et al (2010) Nanotoxicity of pure silica mediated through oxidant generation rather than glutathione depletion in human lung epithelial cells. Toxicology 276:95–102CrossRefGoogle Scholar
  5. Akhtar MJ, Ahamed M, Fareed M et al (2012) Protective effect of sulphoraphane against oxidative stress mediated toxicity induced by CuO nanoparticles in mouse embryonic fibroblasts BALB 3T3. J Toxicol Sci 37:139–148CrossRefGoogle Scholar
  6. Alivisatos AP (2008) Birth of a nanoscience building block. ACS Nano 2:1514–1516CrossRefGoogle Scholar
  7. Anastasiou D, Poulogiannis G, Asara JM, Boxer MB, Jiang J, Shen M, Bellinger G, SasakiAT Locasale JW, Auld DS, Thomas CJ, Vander Heiden MG, Cantley LC (2011) Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. Science 334:1278–1283.  https://doi.org/10.1126/science.1211485CrossRefGoogle Scholar
  8. Applerot G, Lipovsky A, Dror R et al (2009) Enhanced antibacterial activity of nanocrystalline ZnO due to increased ROS-mediated cell injury. Adv Funct Mater 19:842–852CrossRefGoogle Scholar
  9. Auffan M, Rose J, Wiesner MR et al (2009) Chemical stability of metallic nanoparticles: a parameter controlling their potential cellular toxicity in vitro. Environ Pollut 157:1127–1133CrossRefGoogle Scholar
  10. Bakker PJ, Scantlebery AM, Butter LM, Claessen N, Teske GJD, van der Poll T, Florquin S, Leemans JC (2015) TLR9 mediates remote liver injury following severe renal ischemia reperfusion. PLoS ONE 10:e0137511.  https://doi.org/10.1371/journal.pone.0137511CrossRefGoogle Scholar
  11. Bashir S, Harris G, Denman MA, Blake DR, Winyard PG (1993) Oxidative DNA damage and cellular sensitivity to oxidative stress in human autoimmune diseases. Ann Rheum Dis 52:659–666CrossRefGoogle Scholar
  12. Beer C, Foldbjerg R, Hayashi Y et al (2012) Toxicity of silver nanoparticles e nanoparticle or silver ion? Toxicol Lett 208:286–292CrossRefGoogle Scholar
  13. Benderdour M, Charron G, deBlois D, Comte B, Des Rosiers C (2003) Cardiac mitochondrial NADP+ -isocitrate dehydrogenase is inactivated through 4-hydroxynonenal adduct formation. J Biol Chem 278:45154–45159.  https://doi.org/10.1074/jbc.M306285200CrossRefGoogle Scholar
  14. Biniecka M, Kennedy A, Fearon U, Ng CT, Veale DJ, O’Sullivan JN (2010) Oxidative damage in synovial tissue is associated with in vivo hypoxic status in the arthritic joint. Ann Rheum Dis 69:1172–1178.  https://doi.org/10.1136/ard.2009.111211CrossRefGoogle Scholar
  15. Biniecka M, Kennedy A, Ng CT, Chang TC, Balogh E, Fox E, Veale DJ, Fearon U, O’Sullivan JN (2011a) Successful tumour necrosis factor (TNF) blocking therapy suppresses oxidative stress and hypoxia-induced mitochondrial mutagenesis in inflammatory arthritis. Arthritis Res Ther 13:R121.  https://doi.org/10.1186/ar3424CrossRefGoogle Scholar
  16. Biniecka M, Fox E, Gao W, Ng CT, Veale DJ, Fearon U, O’Sullivan J (2011b) Hypoxia induces mitochondrial mutagenesis and dysfunction in inflammatory arthritis. Arthritis Rheum 63:2172–2182.  https://doi.org/10.1002/art.30395CrossRefGoogle Scholar
  17. Biniecka M, Canavan M, McGarry T, Gao W, McCormick J, Cregan S, Gallagher L, Smith T, Phelan JJ, Ryan J, O’Sullivan J, Ng CT, Veale DJ, Fearon U (2016) Dysregulated bioenergetics: a key regulator of joint inflammation. Ann Rheum Dis.  https://doi.org/10.1136/annrheumdis-2015-208476annrheumdis-2015-208476CrossRefGoogle Scholar
  18. Blinova I, Ivask A, Heinlaan M et al (2010) Ecotoxicity of nanoparticles of CuO and ZnO in natural water. Environ Pollut 158:41–47CrossRefGoogle Scholar
  19. Bodamyali T, Stevens CR, Blake DR et al (2000) Reactive oxygen/nitrogen species and acute inflammation: a physiological process. In: Winyard PG, Blake DR, Evans CH (eds) Free radicals and inflammation. Springer, Basel, pp 11–19CrossRefGoogle Scholar
  20. Bottini M, Bruckner S, Nika K et al (2006) Multi-walled carbon nanotubes induce T lymphocyte apoptosis. Toxicol Lett 160:121–126CrossRefGoogle Scholar
  21. Bouriche H, Salavei P, Lessig J, Arnhold J (2007) Differential effects of flavonols on inactivation of alpha1-antitrypsin induced by hypohalous acids and the myeloperoxidase-hydrogen peroxide-halide system. Arch Biochem Biophys 459:137–142.  https://doi.org/10.1016/j.abb.2006.10.030CrossRefGoogle Scholar
  22. Bours MJL, Swennen ELR, Di Virgilio F, Cronstein BN, Dagnelie PC (2006) Adenosine 5’-triphosphate and adenosine as endogenous signaling molecules in immunity and inflammation. Pharmacol Ther 112:358–404.  https://doi.org/10.1016/j.pharmthera.2005.04.013CrossRefGoogle Scholar
  23. Boyapati RK, Tamborska A, Dorward DA, Ho G-T (2017) Advances in the understanding of mitochondrial DNA as a pathogenic factor in inflammatory diseases. F1000Research 6:169. http://dx.doi.org/10.12688/f1000research.10397.1CrossRefGoogle Scholar
  24. Boyoglu C, He Q, Willing G et al (2013) Microscopic studies of various sizes of gold nanoparticles and their cellular localizations. ISRN Nanotechnol.  https://doi.org/10.1155/2013/123838CrossRefGoogle Scholar
  25. Brar SK, Verma M, Tyagi RD et al (2010) Engineered nanoparticles in wastewater and wastewater sludge—evidence and impacts. Waste Manag 30:504–520CrossRefGoogle Scholar
  26. Bulua AC, Simon A, Maddipati R, Pelletier M, Park H, Kim K-Y, Sack MN, Kastner DL, Siegel RM (2011) Mitochondrial reactive oxygen species promote production of proinflammatory cytokines and are elevated in TNFR1-associated periodic syndrome (TRAPS). J Exp Med 208:519–533.  https://doi.org/10.1084/jem.20102049CrossRefGoogle Scholar
  27. Burda C, Chen X, Narayanan R, El-Sayed MA (2005) The chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025–1102CrossRefGoogle Scholar
  28. Butterfield DA (1999) Alzheimer’s a-amyloid peptide and free radical oxidative stress. In: Gilbert DL, Colton CA (eds) Reactive oxygen species in biological systems: an interdisciplinary approach. Kluwer Academic Publishers, New York, pp 609–638Google Scholar
  29. Butterfield DA, Kanski J (2001) Brain protein oxidation in agerelated neurodegenerative disorders that are associated with aggregated proteins. Mech Ageing Dev 122:945–962CrossRefGoogle Scholar
  30. Carlson C, Hussain SM, Schrand AM et al (2008) Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B 112:13608–13619CrossRefGoogle Scholar
  31. Chang X, Wei C (2011) Glycolysis and rheumatoid arthritis. Int J Rheum Dis 14:217–222.  https://doi.org/10.1111/j.1756-185X.2011.01598.xCrossRefGoogle Scholar
  32. Chang X, Cui Y, Zong M, Zhao Y, Yan X, Chen Y, Han J (2009) Identification of proteins with increased expression in rheumatoid arthritis synovial tissues. J Rheumatol 36:872–880.  https://doi.org/10.3899/jrheum.080939CrossRefGoogle Scholar
  33. Chi P-L, Chen Y-W, Hsiao L-D, Chen Y-L, Yang C-M (2012) Heme oxygenase 1 attenuates interleukin-1β-induced cytosolic phospholipase A2 expression via a decrease in NADPH oxidase/reactive oxygen species/activator protein 1 activation in rheumatoid arthritis synovial fibroblasts. Arthritis Rheum 64:2114–2125.  https://doi.org/10.1002/art.34371CrossRefGoogle Scholar
  34. Chiang HM, Xia Q, Zou X et al (2012) Nanoscale ZnO induces cytotoxicity and DNA damage in human cell lines and rat primary neuronal cells. J Nanosci Nanotechnol 12:2126–2135CrossRefGoogle Scholar
  35. Chithrani BD, Ghazani AA, Chan WC (2006) Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6:662–668CrossRefGoogle Scholar
  36. Cissell KA, Rahimi Y, Shrestha S, Hunt EA, Deo SK (2008) Bioluminescence-based detection of microRNA, miR21 in breast cancer cells. Anal Chem 80:2319–2325CrossRefGoogle Scholar
  37. Ciurtin C, Cojocaru VM, Miron IM, Preda F, Milicescu M, Bojincă M, Costan O, Nicolescu A, Deleanu C, Kovàcs E, Stoica V (2006) Correlation between different components of synovial fluid and pathogenesis of rheumatic diseases. Rom J Intern Med 44:171–181Google Scholar
  38. Cohen G (1999) Oxidative stress and Parkinson’s disease. In: Gilbert DL, Colton CA (eds) Reactive oxygen species in biological systems: an interdisciplinary approach. Kluwer Academic Publishers, New York, pp 593–608Google Scholar
  39. Collins LV, Hajizadeh S, Holme E, Jonsson I-M, Tarkowski A (2004) Endogenously oxidized mitochondrial DNA induces in vivo and in vitro inflammatory responses. J Leukoc Biol 75:995–1000.  https://doi.org/10.1189/jlb.0703328CrossRefGoogle Scholar
  40. Connor EE, Mwamuka J, Gole A et al (2005) Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 1:325–327CrossRefGoogle Scholar
  41. Crawford DR (1999) Regulation of mammalian gene expression by reactive oxygen species. In: Gilbert DL, Colton CA (eds) Reactive oxygen species in biological systems: an interdisciplinary approach. Kluwer Academic Publishers, New York, pp 155–171Google Scholar
  42. Da Sylva TR, Connor A, Mburu Y, Keystone E, Wu GE (2005) Somatic mutations in the mitochondria of rheumatoid arthritis synoviocytes. Arthritis Res Ther 7:R844–R851.  https://doi.org/10.1186/ar1752CrossRefGoogle Scholar
  43. Daimon T, Nosaka Y (2007) Formation and behavior of singlet molecular oxygen in TiO2 photocatalysis studied by detection of near-infrared phosphorescence. J Phys Chem C 111:4420–4424CrossRefGoogle Scholar
  44. Darbha GK, Ray A, Ray PC (2007) Gold nanoparticle-based miniaturized NSET Probe for rapid and ultrasensitive detection of mercury in soil, water and fish. ACS Nano 3:208–214CrossRefGoogle Scholar
  45. Darbha GK, Lee G, Anderson YR, Preston F, Mitchell K, Ray PC (2008a) Miniaturized NSET sensor for microbial pathogens DNA and chemical toxins. IEEE Sensor J 8:693–701CrossRefGoogle Scholar
  46. Darbha GK, Rai US, Singh AK, Ray PC (2008b) Highly selective detection of Hg2+ ion using NLO properties of gold nanomaterial. J Am Chem Soc 130:8038–8042CrossRefGoogle Scholar
  47. Dasary SSR, Rai US, Yu H, Anjaneyulu Y, Dubey M, Ray PC (2008) Gold nanomaterial based surface enhanced fluorescence assay for detection of organophosphorus agents. Chem Phys Lett 460:187–190CrossRefGoogle Scholar
  48. Daum S, Chekhun VF, Todor IN, Lukianova NY, Shvets YV, Sellner L, Putzker K, Lewis J, Zenz T, de Graaf IAM, Groothuis GMM, Casini A, Zozulia O, Hampel F, Mokhir A (2015) Improved synthesis of N-benzylaminoferrocene based prodrugs and evaluation of their toxicity and antileukemic activity. J Med Chem 58:2015–2024.  https://doi.org/10.1021/jm5019548CrossRefGoogle Scholar
  49. Dechsakulthorn F, Hayes A, Bakand S et al (2007) In vitro cytotoxicity assessment of selected nanoparticles using human skin fibroblasts. AATEX 14(Special Issue):397–400Google Scholar
  50. Deng GM, Nilsson IM, Verdrengh M, Collins LV, Tarkowski A (1999) Intra-articularly localized bacterial DNA containing CpG motifs induces arthritis. Nat Med 5:702–705.  https://doi.org/10.1038/9554CrossRefGoogle Scholar
  51. Derambure C, Dzangue-Tchoupou G, Berard C, Vergne N, Hiron M, D’Agostino MA, Musette P, Vittecoq O, Lequerré T (2017) Pre-silencing of genes involved in the electron transport chain (ETC) pathway is associated with responsiveness to abatacept in rheumatoid arthritis. Arthritis Res Ther 19:109.  https://doi.org/10.1186/s13075-017-1319-8CrossRefGoogle Scholar
  52. Ding L, Stilwell J, Zhang T et al (2005) Molecular characterization of the cytotoxic mechanism of multiwall carbon nanotubes and nano-onions on human skin fibroblast. Nano Lett 5:2448–2464CrossRefGoogle Scholar
  53. Doering M, Ba LA, Lilienthal N, Nicco C, Scherer C, Abbas M, Zada AAP, Coriat R, Burkholz T, Wessjohann L, Diederich M, Batteux F, Herling M, Jacob C (2010) Synthesis and selective anticancer activity of organochalcogen based redox catalysts. J Med Chem 53:6954–6963.  https://doi.org/10.1021/jm100576zCrossRefGoogle Scholar
  54. Donaldson K, Tran C, MacNee W (2002) Deposition and effects of fine and ultrafine particles in the respiratory tract. Eur Respir Monogr 7:77–92Google Scholar
  55. Droge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82:47–95CrossRefGoogle Scholar
  56. Echtay KS, Esteves TC, Pakay TL, Jekabsons MB, Lambert AJ, Portero-Otín M, Pamplona R, Vidal-Puig AJ, Wang S, Roebuck SJ, Brand MD (2003) A signaling role for 4-hydroxy-2-nonenal in regulation of mitochondrial uncoupling. EMBO J 22:4103–4110.  https://doi.org/10.1093/emboj/cdg412CrossRefGoogle Scholar
  57. Egea J, Fabregat I, Frapart YM, Ghezzi P, Görlach A, Kietzmann T, Kubaichuk K, Knaus UG, Lopez MG, Olaso-Gonzalez G, Petry A, Schulz R, Vina J, Winyard P, Abbas K, Ademowo OS, Afonso CB, Andreadou I, Antelmann H, Antunes F, Aslan M, Bachschmid MM, Barbosa RM, Belousov V, Berndt C, Bernlohr D, Bertrαn E, Bindoli A, Bottari SP, Brito PM, Carrara G, Casas AI, Chatzi A, Chondrogianni N, Conrad M, Cooke MS, Costa JG, Cuadrado A, My-Chan Dang P, De Smet B, Debelec-Butuner B, Dias IHK, Dunn JD, Edson AJ, El Assar M, El-Benna J, Ferdinandy P, Fernandes AS, Fladmark KE, Förstermann U, Giniatullin R, Giricz Z, Görbe A, Griffiths H, Hampl V, Hanf A, Herget J, Hernansanz-Agustín P, Hillion M, Huang J, Ilikay S, Jansen-Dürr P, Jaquet V, Joles JA, Kalyanaraman B, Kaminskyy D, Karbaschi M, Kleanthous M, Klotz LO, Korac B, Korkmaz KS, Koziel R, Kračun D, Krause KH, Křen V, Krieg T, Laranjinha J, Lazou A, Li H, Martínez-Ruiz A, Matsui R, McBean GJ, Meredith SP, Messens J, Miguel V, Mikhed Y, Milisav I, Milković L, Miranda-Vizuete A, Mojović M, Monsalve M, Mouthuy PA, Mulvey J, Münzel T, Muzykantov V, Nguyen ITN, Oelze M, Oliveira NG, Palmeira CM, Papaevgeniou N, Pavićević A, Pedre B, Peyrot F, Phylactides M, Pircalabioru GG, Pitt AR, Poulsen HE, Prieto I, Rigobello MP, Robledinos-Antón N, Rodríguez-Mañas L, Rolo AP, Rousset F, Ruskovska T, Saraiva N, Sasson S, Schröder K, Semen K, Seredenina T, Shakirzyanova A, Smith GL, Soldati T, Sousa BC, Spickett CM, Stancic A, Stasia MJ, Steinbrenner H, Stepanić V, Steven S, Tokatlidis K, Tuncay E, Turan B, Ursini F, Vacek J, Vajnerova O, Valentovα K, Van Breusegem F, Varisli L, Veal EA, Yalçın AS, Yelisyeyeva O, Žarković N, Zatloukalovα M, Zielonka J, Touyz RM, Papapetropoulos A, Grune T, Lamas S, Schmidt HHHW, Di Lisa F, Daiber A (2017) European contribution to the study of ROS: a summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS). Redox Biol 13:94–162.  https://doi.org/10.1016/j.redox.2017.05.007CrossRefGoogle Scholar
  58. Ekstrand-Hammarstrom B, Akfur CM, Andersson PO et al (2012) Human primary bronchial epithelial cells respond differently to titanium dioxide nanoparticles than the lung epithelial cell lines A549 and BEAS-2B. Nanotoxicology 6:623–634CrossRefGoogle Scholar
  59. Evans MD, Dizdaroglu M, Cooke MS (2004) Oxidative DNA damage and disease: induction, repair and significance. Mutat Res 567:1–61CrossRefGoogle Scholar
  60. Faisal M, Saquib Q, Alatar AA et al (2013) Phytotoxic hazards of NiO-nanoparticles in tomato: a study on mechanism of cell death. J Hazard Mater 250–251:318–332CrossRefGoogle Scholar
  61. Fan Z, Lu JG (2005) Zinc oxide nanostructures: synthesis and properties. J Nanosci Nanotechnol 5:1561–1573CrossRefGoogle Scholar
  62. Fernandez-Boyanapalli RF, Courtney Frasch S, Thomas SM, Malcolm KC, Nicks M, Harbeck RJ, Jakubzick CV, Nemenoff R, Henson PM, Holland SM, Bratton DL (2015) Pioglitazone restores phagocyte mitochondrial oxidants and bactericidal capacity in chronic granulomatous disease (e12). J Allergy Clin Immunol 135:517–527.  https://doi.org/10.1016/j.jaci.2014.10.034CrossRefGoogle Scholar
  63. Fischer K, Hoffmann P, Voelkl S, Meidenbauer N, Ammer J, Edinger M, Gottfried E, Schwarz S, Rothe G, Hoves S, Renner K, Timischl B, Mackensen A, Kunz-Schughart L, Andreesen R, Krause SW, Kreutz M (2007) Inhibitory effect of tumor cell-derived lactic acid on human T cells. Blood 109:3812–3819.  https://doi.org/10.1182/blood-2006-07-035972CrossRefGoogle Scholar
  64. Foldbjerg R, Dang DA, Autrup H (2011) Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line, A549. Arch Toxicol 85:743–750CrossRefGoogle Scholar
  65. Franklin NM, Rogers NJ, Apte SC et al (2007) Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environ Sci Technol 41:8484–8490CrossRefGoogle Scholar
  66. Fu PP, Xia Q, Sun X et al (2012) Phototoxicity and environmental transformation of polycyclic aromatic hydrocarbons (PAHs)-light-induced reactive oxygen species, lipid peroxidation, and DNA damage. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 30:1–41CrossRefGoogle Scholar
  67. Fukuda R, Zhang H, Kim J, Shimoda L, Dang CV, Semenza GL (2007) HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells. Cell 129:111–122.  https://doi.org/10.1016/j.cell.2007.01.047CrossRefGoogle Scholar
  68. Gaidt MM, Hornung V (2017) The NLRP3 inflammasome renders cell death pro-inflammatory. J Mol Biol. http://dx.doi.org/10.1016/j.jmb.2017.11.013Google Scholar
  69. Gatenby RA, Gillies RJ (2004) Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4:891–899.  https://doi.org/10.1038/nrc1478CrossRefGoogle Scholar
  70. Ghosh M, Bandyopadhyay M, Mukherjee A (2010) Genotoxicity of titanium dioxide (TiO2) nanoparticles at two trophic levels: plant and human lymphocytes. Chemosphere 81:1253–1262CrossRefGoogle Scholar
  71. Girgis E, Khalil WK, Emam AN et al (2012) Nanotoxicity of gold and gold-cobalt nanoalloy. Chem Res Toxicol 25:1086–1098CrossRefGoogle Scholar
  72. Gobelet C, Gerster JC (1984) Synovial fluid lactate levels in septic and non-septic arthritides. Ann Rheum Dis 43:742–745CrossRefGoogle Scholar
  73. Gonzalez L, Lison D, Kirsch-Volders M (2008) Genotoxicity of engineered nanomaterials: a critical review. Nanotoxicology 2:252–273CrossRefGoogle Scholar
  74. Goodman CM, McCusker CD, Yilmaz T et al (2004) Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjug Chem 15:897–900CrossRefGoogle Scholar
  75. Grassian VH, O’Shaughnessy PT, Adamcakova-Dodd A et al (2007) Inhalation exposure study of titanium dioxide nanoparticles with a primary particle size of 2 to 5 nm. Environ Health Perspect 115:397–402CrossRefGoogle Scholar
  76. Gratton SEA, Ropp PA, Pohlhaus PD et al (2008) The effect of particle design on cellular internalization pathways. Proc Natl Acad Sci USA 105:11613–11618CrossRefGoogle Scholar
  77. Greene CM, McElvaney NG (2009) Proteases and antiproteases in chronic neutrophilic lung disease—relevance to drug discovery. Br J Pharmacol 158:1048–1058.  https://doi.org/10.1111/j.1476-5381.2009.00448.xCrossRefGoogle Scholar
  78. Griffin J, Ray PC (2008) Gold nanoparticle based NSET for monitoring Mg2+ dependent RNA folding. J. Phys. Chem. B 112:11198–11201CrossRefGoogle Scholar
  79. Griffin J, Singh AK, Senapati D, Lee E, Gaylor K, Jones-Boone J, Ray PC (2008) Sequence-specific HCV RNA quantification using the size-dependent nonlinear optical properties of gold nanoparticles. Small 5(7):839–845.  https://doi.org/10.1002/smll.200801334CrossRefGoogle Scholar
  80. Griffiths HR (2002) Biomarkers. NMol Asp Med 23:28Google Scholar
  81. Griffiths HR (2008) Is the generation of neo-antigenic determinants by free radicals central to the development of autoimmune rheumatoid disease? Autoimmun Rev 7:544–549.  https://doi.org/10.1016/J.AUTREV.2008.04.013CrossRefGoogle Scholar
  82. Griffitt RJ, Luo J, Gao J et al (2008) Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms. Environ Toxicol Chem 27:1972–1978CrossRefGoogle Scholar
  83. Gurr JR, Wang AS, Chen CH et al (2005) Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology 213:66–73CrossRefGoogle Scholar
  84. Haas R, Smith J, Rocher-Ros V, Nadkarni S, Montero-Melendez T, D’Acquisto F, Bland EJ, Bombardieri M, Pitzalis C, Perretti M, Marelli- Berg FM, Mauro V (2015) Lactate regulates metabolic and pro-inflammatory circuits in control of T cell migration and effector functions. PLoS Biol 13:e1002202.  https://doi.org/10.1371/journal.pbio.1002202CrossRefGoogle Scholar
  85. Hajizadeh S, DeGroot J, TeKoppele JM, Tarkowski A, Collins LV (2003) Extracellular mitochondrial DNA and oxidatively damaged DNA in synovial fluid of patients with rheumatoid arthritis. Arthritis Res Ther 5:R234–R240.  https://doi.org/10.1186/ar787CrossRefGoogle Scholar
  86. Hakkim A, Fürnrohr BG, Amann K, Laube B, Abed UA, Brinkmann V, Herrmann M, Voll RE, Zychlinsky A (2010) Impairment of neutrophil extracellular trap degradation is associated with lupus nephritis. Proc Natl Acad Sci USA 107:9813–9818.  https://doi.org/10.1073/pnas.0909927107CrossRefGoogle Scholar
  87. Halliwell B, Gutteridge JMC (eds) (1989) The chemistry of oxygen radicals and other oxygen-derived species. Oxford University Press, New YorkGoogle Scholar
  88. Harty LC, Biniecka M, O’Sullivan J, Fox E, Mulhall K, Veale DJ, Fearon U (2012) Mitochondrial mutagenesis correlates with the local inflammatory environment in arthritis. Ann Rheum Dis 71:582–588.  https://doi.org/10.1136/annrheumdis-2011-200245CrossRefGoogle Scholar
  89. Hauck TS, Anderson RE, Fischer HC et al (2010) In vivo quantumdot toxicity assessment. Small 6:138–144CrossRefGoogle Scholar
  90. He C, Hu Y, Yin L et al (2010) Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials 31:3657–3666CrossRefGoogle Scholar
  91. He W, Zhou YT, Wamer WG et al (2012) Mechanisms of the pH dependent generation of hydroxyl radicals and oxygen induced by Ag nanoparticles. Biomaterials 33:7547–7555CrossRefGoogle Scholar
  92. Henderson B, Bitensky L, Chayen J (1979) Glycolytic activity in human synovial lining cells in rheumatoid arthritis. Ann Rheum Dis 38:63–67.  https://doi.org/10.1136/ard.38.1.63CrossRefGoogle Scholar
  93. Hirakawa K, Hirano T (2006) Singlet oxygen generation photocatalyzed by TiO2 particles and its contribution to biomolecule damage. Chem Lett 35:832–833CrossRefGoogle Scholar
  94. Hirao M, Yamasaki N, Oze H, Ebina K, Nampei A, Kawato Y, Shi K, Yoshikawa H, Nishimoto N, Hashimoto J (2012) Serum level of oxidative stress marker is dramatically low in patients with rheumatoid arthritis treated with tocilizumab. Rheumatol Int 32:4041–4045.  https://doi.org/10.1007/s00296-011-2135-0CrossRefGoogle Scholar
  95. Hitchon CA, El-Gabalawy HS (2004) Oxidation in rheumatoid arthritis. Arthritis Res Ther 6:265.  https://doi.org/10.1186/ar1447CrossRefGoogle Scholar
  96. Hitchon CA, El-Gabalawy HS, Bezabeh T (2009) and Characterization of synovial tissue from arthritis patients: a proton magnetic resonance spectroscopic investigation. Rheumatol Int 29:1205–1211.  https://doi.org/10.1007/s00296-009-0865-zCrossRefGoogle Scholar
  97. Hoshino A, Hanada S, Yamamoto K (2011) Toxicity of nanocrystal quantum dots: the relevance of surface modifications. Arch Toxicol 85:707–720CrossRefGoogle Scholar
  98. Hoskins C, Cuschieri A, Wang L (2012) The cytotoxicity of polycationic iron oxide nanoparticles: common endpoint assays and alternative approaches for improved understanding of cellular response mechanism. J Nanobiotechnol 10:15CrossRefGoogle Scholar
  99. Hou K-L, Lin S-K, Chao L-H, Hsiang-Hua Lai E, Chang C-C, Shun C-T, Lu W-Y, Wang J-H, Hsiao M, Hong C-Y, Kok S-H (2017) Sirtuin 6 suppresses hypoxiainduced inflammatory response in human osteoblasts via inhibition of reactive oxygen species production and glycolysis-A therapeutic implication in inflammatory bone resorption. Biofactors 43:170–180.  https://doi.org/10.1002/biof.1320CrossRefGoogle Scholar
  100. Hsin YH, Chen CF, Huang S et al (2008) The apoptotic effect of nanosilver is mediated by a ROS- and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells. Toxicol Lett 179:130–139CrossRefGoogle Scholar
  101. http://www.nano.gov. NNI Supplement to the President’s 2018 Budget. Now Available Online
  102. Hultqvist M, Olofsson P, Gelderman KA, Holmberg J, Holmdahl R (2006) A new arthritis therapy with oxidative burst inducers. PLOS Med 3:e348.  https://doi.org/10.1371/journal.pmed.0030348CrossRefGoogle Scholar
  103. Hultqvist M, Olofsson P, Wallner FK, Holmdahl R (2014) Pharmacological potential of NOX2 agonists in inflammatory conditions. Antioxid Redox Signal 00:1–14.  https://doi.org/10.1089/ars.2013.5788CrossRefGoogle Scholar
  104. Hwang NR, Yim S-H, Kim YM, Jeong J, Song EJ, Lee Y, Lee JH, Choi S, Lee K-J (2009) Oxidative modifications of glyceraldehyde-3-phosphate dehydrogenase play a key role in its multiple cellular functions. Biochem J 423:253–264.  https://doi.org/10.1042/BJ20090854CrossRefGoogle Scholar
  105. Ishii T, Sunami O, Nakajima H, Nishio H, Takeuchi T, Hata F (1999) Critical role of sulfenic acid formation of thiols in the inactivation of glyceraldehyde-3-phosphate dehydrogenase by nitric oxide. Biochem Pharmacol 58:133–143CrossRefGoogle Scholar
  106. Ispas C, Andreescu D, Patel A et al (2009) Toxicity and developmental defects of different sizes and shape nickel nanoparticles in zebrafish. Environ Sci Technol 43:6349–6356CrossRefGoogle Scholar
  107. Jin CY, Zhu BS, Wang XF et al (2008) Cytotoxicity of titanium dioxide nanoparticles in mouse fibroblast cells. Chem Res Toxicol 21:1871–1877CrossRefGoogle Scholar
  108. Kageyama Y, Takahashi M, Ichikawa T, Torikai E, Nagano A (2008a) Reduction of oxidative stress marker levels by anti-TNF-alpha antibody, infliximab, in patients with rheumatoid arthritis. Clin Exp Rheumatol 26:73–80Google Scholar
  109. Kageyama Y, Takahashi M, Nagafusa T, Torikai E, Nagano A (2008b) Etanercept reduces the oxidative stress marker levels in patients with rheumatoid arthritis. Rheumatol Int 28:245–251.  https://doi.org/10.1007/s00296-007-0419-1CrossRefGoogle Scholar
  110. Kang SJ, Kim BM, Lee YJ et al (2008) Titanium dioxide nanoparticles trigger p53-mediated damage response in peripheral blood lymphocytes. Environ Mol Mutagen 49:399–405CrossRefGoogle Scholar
  111. Kangwansupamonkon W, Lauruengtana V, Surassmo S et al (2009) Antibacterial effect of apatite coated titanium dioxide for textiles applications. Nanomedicine 5:240–249CrossRefGoogle Scholar
  112. Kao W, Gu R, Jia Y, Wei X, Fan H, Harris J, Zhang Z, Quinn J, Morand EF, Yang YH (2014) A formyl peptide receptor agonist suppresses inflammation and bone damage in arthritis. Br J Pharmacol 171:4087–4096.  https://doi.org/10.1111/bph.12768CrossRefGoogle Scholar
  113. Karlsson HL, Cronholm P, Gustafsson J et al (2008) Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem Res Toxicol 21:1726–1732CrossRefGoogle Scholar
  114. Kawanishi S, Hiraku Y, Murata M et al (2002) The role of metals in site-specific DNA damage with reference to carcinogenesis. Free Radic Biol Med 32:822–832CrossRefGoogle Scholar
  115. Kennedy A, Ng CT, Biniecka M, Saber T, Taylor C, O’Sullivan J, Veale DJ, Fearon U (2010) Angiogenesis and blood vessel stability in inflammatory arthritis. Arthritis Rheum 62:711–721.  https://doi.org/10.1002/art.27287CrossRefGoogle Scholar
  116. Kienhöfer D, Hahn J, Schubert I, Reinwald C, Ipseiz N, Lang SC, Bosch Borràs K, Amann C, Sjöwall AE, Barron AJ, Hueber B, Agerberth G, Schett MH Hoffmann (2014) No evidence of pathogenic involvement of cathelicidins in patient cohorts and mouse models of lupus and arthritis. PLoS One 9:1–19.  https://doi.org/10.1371/journal.pone.0115474CrossRefGoogle Scholar
  117. Kienhöfer D, Hahn J, Stoof J, Csepregi JZ, Reinwald C, Urbonaviciute V, Johnsson C, Maueröder C, Podolska MJ, Biermann MH, Leppkes M, Harrer T, Hultqvist M, Olofsson P, Munoz LE, Mocsai A, Herrmann M, Schett G, Holmdahl R, Hoffmann MH (2017) Experimental lupus is aggravated in mouse strains with impaired induction of neutrophil extracellular traps. JCI Insight 2:e92920.  https://doi.org/10.1172/jci.insight.92920CrossRefGoogle Scholar
  118. Kim S, Ryu DY (2013) Silver nanoparticle-induced oxidative stress, genotoxicity and apoptosis in cultured cells and animal tissues. J Appl Toxicol 33:78–89CrossRefGoogle Scholar
  119. Kim J, Tchernyshyov I, Semenza GL, Dang CV (2006) HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 3:177–185.  https://doi.org/10.1016/j.cmet.2006.02.002CrossRefGoogle Scholar
  120. Kim EK, Kwon J-E, Lee S-Y, Lee E-J, Kim DS, Moon S-J, Lee J, Kwok S-K, Park S-H, Cho M-L (2017) IL-17-mediated mitochondrial dysfunction impairs apoptosis in rheumatoid arthritis synovial fibroblasts through activation of autophagy. Cell Death Dis 8:e2565.  https://doi.org/10.1038/cddis.2016.490CrossRefGoogle Scholar
  121. Knaapen AM, Shi T, Borm PJ, Schins RP (2002) Soluble metals as well as the insoluble particle fraction are involved in cellular DNA damage induced by particulate matter. Mol Cell Biochem 234(1):317–326CrossRefGoogle Scholar
  122. Knight JS, Carmona-Rivera C, Kaplan MJ (2012) Proteins derived from neutrophil extracellular traps may serve as self-antigens and mediate organ damage in autoimmune diseases. Front Immunol 3:1–12.  https://doi.org/10.3389/fimmu.2012.00380CrossRefGoogle Scholar
  123. Kruger P, Saffarzadeh M, Weber ANR, Rieber N, Radsak M, von Bernuth H, Benarafa C, Roos D, Skokowa J, Hartl D (2015) Neutrophils: between host defence, immune modulation, and tissue injury. PLoS Pathog 11:1–22.  https://doi.org/10.1371/journal.ppat.1004651CrossRefGoogle Scholar
  124. Kundu S, Ghosh P, Datta S, Ghosh A, Chattopadhyay S, Chatterjee M (2012) Oxidative stress as a potential biomarker for determining disease activity in patients with rheumatoid arthritis. Free Radic Res 46:1482–1489.  https://doi.org/10.3109/10715762.2012.727991CrossRefGoogle Scholar
  125. Kurien BT, Scofield RH (2008) Autoimmunity and oxidatively modified autoantigens. Autoimmun Rev 7:567–573.  https://doi.org/10.1016/j.autrev.2008.04.019CrossRefGoogle Scholar
  126. Lamonte G, Tang X, Chen JL-Y, Wu J, Ding C-KC, Keenan MM, Sangokoya C, Kung H-N, Ilkayeva O, Boros LG, Newgard CB, Chi J-T (2013) Acidosis induces reprogramming of cellular metabolism to mitigate oxidative stress. Cancer Metab 1:23.  https://doi.org/10.1186/2049-3002-1-23CrossRefGoogle Scholar
  127. Lande R, Ganguly D, Facchinetti V, Frasca L, Conrad C, Gregorio J, Meller S, Chamilos G, Sebasigari R, Riccieri V, Bassett R, Amuro H, Fukuhara S, Ito T, Liu YJ, Gilliet M (2011) Neutrophils activate plasmacytoid dendritic cells by releasing self-DNA peptide complexes in systemic lupus erythematosus. Sci Transl Med 3:73ra19–73ra19.  https://doi.org/10.1126/scitranslmed.3001180CrossRefGoogle Scholar
  128. Latz E (2010) NOX-free inflammasome activation. Blood 116:1393–1404.  https://doi.org/10.1182/blood-2009-12-257063CrossRefGoogle Scholar
  129. Lee S, Yun HS, Kim SH (2011a) The comparative effects of mesoporous silica nanoparticles and colloidal silica on inflammation and apoptosis. Biomaterials 32:9434–9443CrossRefGoogle Scholar
  130. Lee K, Won HY, Bae MA, Hong J-H, Hwang ES (2011b) Spontaneous and aging dependent development of arthritis in NADPH oxidase 2 deficiency through altered differentiation of CD11b+ and Th/Treg cells. Proc Natl Acad Sci 108:9548–9553.  https://doi.org/10.1073/pnas.1012645108CrossRefGoogle Scholar
  131. Lewinski N, Colvin V, Drezek R (2008) Cytotoxicity of nanoparticles. Small 4:26–39CrossRefGoogle Scholar
  132. Li Y, Ye D (2013) Molecular biology for formyl peptide receptors in human diseases. J Mol Med (Berl) 91:781–789.  https://doi.org/10.1007/s00109-013-1005-5CrossRefGoogle Scholar
  133. Li Y, Yu S, Wu Q et al (2012) Chronic Al2O3-nanoparticle exposure causes neurotoxic effects on locomotion behaviors by inducing severe ROS production and disruption of ROS defense mechanisms in nematode Caenorhabditis elegans. J Hazard Mater 219:221–230CrossRefGoogle Scholar
  134. Li Y, Zheng J-Y, Liu J-Q, Yang J, Liu Y, Wang C, Ma X-N, Liu B-L, Xin G-Z, Liu L-F (2016) Succinate/NLRP3 inflammasome induces synovial fibroblast activation: therapeutical effects of clematichinenoside AR on arthritis. Front Immunol 7:532.  https://doi.org/10.3389/fimmu.2016.00532CrossRefGoogle Scholar
  135. Liao KH, Lin YS, Macosko CW et al (2011) Cytotoxicity of graphene oxide and graphene in human erythrocytes and skin fibroblasts. ACS Appl Mater Interfaces 3:2607–2615CrossRefGoogle Scholar
  136. Limbach LK, Wick P, Manser P et al (2007) Exposure of engineered nanoparticles to human lung epithelial cells: influence of chemical composition and catalytic activity on oxidative stress. Environ Sci Technol 41:4158–4163CrossRefGoogle Scholar
  137. Lindy S, Uitto J, Turto H, Rokkanen P, Vainio K (1971) Lactate dehydrogenase in the synovial tissue in rheumatoid arthritis: total activity and isoenzyme composition. Clin Chim Acta 31:19–23CrossRefGoogle Scholar
  138. Lood C, Blanco LP, Purmalek MM, Carmona-Rivera C, De Ravin SS, Smith CK, Malech HL, Ledbetter JA, Elkon KB, Kaplan MJ (2016) Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease. Nat Med.  https://doi.org/10.1038/nm.4027CrossRefGoogle Scholar
  139. Lu W, Senapati D, Wang S et al (2010) Effect of surface coating on the toxicity of silver nanomaterials on human skin keratinocytes. Chem Phys Lett 487:92–96CrossRefGoogle Scholar
  140. Lubick N (2008) Nanosilver toxicity: ions, nanoparticles, or both? Environ Sci Technol 42:8617CrossRefGoogle Scholar
  141. Lunec J, Herbert K, Blount S, Griffiths HR, Emery P (1994) 8-Hydroxydeoxyguanosine. A marker of oxidative DNA damage in systemic lupus erythematosus. FEBS Lett 348:131–138.  https://doi.org/10.1016/0014-5793(94)00583-4CrossRefGoogle Scholar
  142. Luo W, Semenza GL (2011) Pyruvate kinase M2 regulates glucose metabolism by functioning as a coactivator for hypoxia-inducible factor 1 in cancer cells. Oncotarget 2:551–556.  https://doi.org/10.18632/oncotarget.299CrossRefGoogle Scholar
  143. Maccormack TJ, Clark RJ, Dang MK et al (2012) Inhibition of enzyme activity by nanomaterials: potential mechanisms and implications for nanotoxicity testing. Nanotoxicology 6:514–525CrossRefGoogle Scholar
  144. Madkour LH (2017a) Advanced AuNMs as nanomedicine’s central goals capable of active targeting in both imaging and therapy in biomolecules. Glob Drugs Ther 2(6):1–12Google Scholar
  145. Madkour LH (2017b) Biotechnology of nucleic acids medicines as gene therapeutics and their drug complexes. Chronicles Pharm Sci J 1(4):204–253Google Scholar
  146. Madkour LH (2017c) Advanced AuNMs as nanomedicine’scentral goals capable of active targeting in both imaging and therapy in biomolecules. BAOJ Nanotechnol 3(1):1–18Google Scholar
  147. Madkour LH (2017d) Vision for life sciences: interfaces between nanoelectronic and biological systems. Glob Drugs Ther 2(4):1–4Google Scholar
  148. Madkour LH (2018a) Applications of gold nanoparticles in medicine and therapy. Pharm Pharmacol Int J 6(3):157–174.  https://doi.org/10.15406/ppij.2018.06.00172CrossRefGoogle Scholar
  149. Madkour LH (2018b) Biogenic—biosynthesis metallic nanoparticles (MNPs) for pharmacological, biomedical and environmental nanobiotechnological applications. Chronicles Pharm Sci J 2(1):384–444Google Scholar
  150. Madkour LH (2018c) Ecofriendly green biosynthesized of metallic nanoparticles: bio-reduction mechanism, characterization and pharmaceutical applications in biotechnology industry. Glob Drugs Ther 3(1):1–11Google Scholar
  151. Magari SR, Schwartz J, Williams PL, Hauser R, Smith TJ, Christiani DC (2002) The association of particulate air metal concentrations with heart rate variability. Environ Health Perspect 110(9):875–880CrossRefGoogle Scholar
  152. Magrez A, Kasas S, Salicio V et al (2006) Cellular toxicity of carbon-based nanomaterials. Nano Lett 6:1121–1125CrossRefGoogle Scholar
  153. Mahto SK, Yoon TH, Rhee SW (2010) A new perspective on in vitro assessment method for evaluating quantum dot toxicity by using microfluidics technology. Biomicrofluidics 4(3):03411.  https://doi.org/10.1063/1.3486610CrossRefGoogle Scholar
  154. Maicas N, Ferrαndiz ML, Brines R, Ibαñez L, Cuadrado A, Koenders MI, van den Berg WB, Alcaraz MJ (2011) Deficiency of Nrf2 accelerates the effector phase of arthritis and aggravates joint disease. Antioxid Redox Signal 15:889–901.  https://doi.org/10.1089/ars.2010.3835CrossRefGoogle Scholar
  155. McCarthy J, Inkielewicz-Stepniak I, Corbalan JJ et al (2012) Mechanisms of toxicity of amorphous silica nanoparticles on human lung submucosal cells in vitro: protective effects of fisetin. Chem Res Toxicol 25:2227–2235CrossRefGoogle Scholar
  156. McGarry T, Biniecka M, Gao W, Cluxton D, Canavan M, Wade S, Wade S, Gallagher L, Orr C, Veale DJ, Fearon U (2017) Resolution of TLR2-induced inflammation through manipulation of metabolic pathways in rheumatoid arthritis. Sci Rep 7:43165.  https://doi.org/10.1038/srep43165CrossRefGoogle Scholar
  157. McLaren A, Valdes-Solis T, Li G et al (2009) Shape and size effects of ZnO nanocrystals on photocatalytic activity. J Am Chem Soc 131:12540–12541CrossRefGoogle Scholar
  158. Mei N, Zhang Y, Chen Y et al (2012) Silver nanoparticle-induced mutations and oxidative stress in mouse lymphoma cells. Environ Mol Mutagen 53:409–419CrossRefGoogle Scholar
  159. Meng H, Xia T, George S et al (2009) A predictive toxicological paradigm for the safety assessment of nanomaterials. ACS Nano 3:1620–1627CrossRefGoogle Scholar
  160. Mobasheri A, Richardson S, Mobasheri R, Shakibaei M, Hoyland JA (2005) Hypoxia inducible factor-1 and facilitative glucose transporters GLUT1 and GLUT3: putative molecular components of the oxygen and glucose sensing apparatus in articular chondrocytes. Histol Histopathol 20:1327–1338.  https://doi.org/10.14670/HH-20.1327CrossRefGoogle Scholar
  161. Moore MN, Allen JI (2002) A computational model of the digestive gland epithelial cell of the marine mussel and its simulated responses to aromatic hydrocarbons. Mar Environ Res 54:579–584CrossRefGoogle Scholar
  162. Morten KJ, Badder L, Knowles HJ (2013) Differential regulation of HIF-mediated pathways increases mitochondrial metabolism and ATP production in hypoxic osteoclasts. J Pathol 229:755–764.  https://doi.org/10.1002/path.4159CrossRefGoogle Scholar
  163. Mura GM, Ganadu ML, Lubinu G et al (1999) Photodegradation of organic waste coupling hydrogenase and titanium dioxide. Ann NY Acad Sci 879:267–275CrossRefGoogle Scholar
  164. Nakahira K, Haspel JA, Rathinam VAK, Lee S-J, Dolinay T, Lam HC, Englert JA, Rabinovitch M, Cernadas M, Kim HP, Fitzgerald KA, Ryter SW, Choi AMK (2011) Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat Immunol 12:222–230.  https://doi.org/10.1038/ni.1980CrossRefGoogle Scholar
  165. Nakahira K, Hisata S, Choi AMK (2015) The roles of mitochondrial damage-associated molecular patterns in diseases. Antioxid Redox Signal 23:1329–1350.  https://doi.org/10.1089/ars.2015.6407CrossRefGoogle Scholar
  166. Naughton DP (2003) Hypoxia-induced upregulation of the glycolytic enzyme glucose-6-phosphate isomerase perpetuates rheumatoid arthritis. Med Hypotheses 60:332–334CrossRefGoogle Scholar
  167. Naughton DP, Haywood R, Blake DR, Edmonds S, Hawkes GE, Grootveld M (1993) A comparative evaluation of the metabolic profiles of normal and inflammatory knee-joint synovial fluids by high resolution proton NMR spectroscopy. FEBS Lett 332:221–225CrossRefGoogle Scholar
  168. Nel A, Xia T, Madler L et al (2006) Toxic potential of materials at the nanolevel. Science 311:622–627CrossRefGoogle Scholar
  169. Niedowicz DM, Daleke DL (2005) The role of oxidative stress in diabetic complications. Cell Biochem Biophys 43:289–330CrossRefGoogle Scholar
  170. Oberdorster E (2004) Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environ Health Perspect 112:1058–1062CrossRefGoogle Scholar
  171. Oberdörster G, Maynard A, Donaldson K et al (2005a) Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol 2(1):8CrossRefGoogle Scholar
  172. Oberdörster G, Oberdörster E, Oberdörster J (2005b) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839CrossRefGoogle Scholar
  173. Oh WK, Kim S, Choi M et al (2010) Cellular uptake, cytotoxicity, and innate immune response of silica-titania hollow nanoparticles based on size and surface functionality. ACS Nano 4:5301–5313CrossRefGoogle Scholar
  174. Okano T, Saegusa J, Nishimura K, Takahashi S, Sendo S, Ueda Y, Morinobu A (2017) 3-bromopyruvate ameliorate autoimmune arthritis by modulating Th17/Treg cell differentiation and suppressing dendritic cell activation. Sci Rep 7:42412.  https://doi.org/10.1038/srep42412CrossRefGoogle Scholar
  175. Onodera Y, Teramura T, Takehara T, Shigi K, Fukuda K (2015) Reactive oxygen species induce Cox-2 expression via TAK1 activation in synovial fibroblast cells. FEBS Open Bio 5:492–501.  https://doi.org/10.1016/j.fob.2015.06.001CrossRefGoogle Scholar
  176. Oremek GM, Müller R, Sapoutzis N, Wigand R (2003) Pyruvate kinase type tumor M2 plasma levels in patients afflicted with rheumatic diseases. Anticancer Res 23:1131–1134Google Scholar
  177. Ozel RE, Alkasir RS, Ray K et al (2013) Comparative evaluation of intestinal nitric oxide in embryonic zebrafish exposed to metal oxide nanoparticles. Small 9:4250–4261CrossRefGoogle Scholar
  178. Palsson-McDermott EM, O’Neill LAJ (2013) The Warburg effect then and now: from cancer to inflammatory diseases. BioEssays 35:965–973.  https://doi.org/10.1002/bies.201300084CrossRefGoogle Scholar
  179. Palsson-McDermott EM, Curtis AM, Goel G, Lauterbach MAR, Sheedy FJ, Gleeson LE, van den Bosch MWM, Quinn SR, Domingo-Fernandez R, Johnson DGW, Jiang J, Israelsen WJ, Keane J, Thomas C, Clish C, Vanden Heiden M, Xavier RJ, O’Neill LAJ (2015) Pyruvate kinase M2 regulates Hif-1α activity and IL-1β induction and is a critical determinant of the warburg effect in LPS-activated macrophages. Cell Metab 21:65–80.  https://doi.org/10.1016/j.cmet.2014.12.005CrossRefGoogle Scholar
  180. Palsson-McDermott EM, Dyck L, Zasłona Z, Menon D, McGettrick AF, Mills KHG, O’Neill LA (2017) Pyruvate kinase M2 is required for the expression of the immune checkpoint PD-L1 in immune cells and tumors. Front Immunol 8:1300.  https://doi.org/10.3389/fimmu.2017.01300CrossRefGoogle Scholar
  181. Papandreou I, Cairns RA, Fontana L, Lim AL, Denko NC (2006) HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab 3:187–197.  https://doi.org/10.1016/j.cmet.2006.01.012CrossRefGoogle Scholar
  182. Park SY, Lee SW, Shin HK, Chung WT, Lee WS, Rhim BY, Hong KW, Kim CD (2010) Cilostazol enhances apoptosis of synovial cells from rheumatoid arthritis patients with inhibition of cytokine formation via Nrf2-linked heme oxygenase 1 induction. Arthritis Rheum 62:732–741.  https://doi.org/10.1002/art.27291CrossRefGoogle Scholar
  183. Patten DA, Lafleur VN, Robitaille GA, Chan DA, Giaccia AJ, Richard DE (2010) Hypoxia-inducible factor-1 activation in nonhypoxic conditions: the essential role of mitochondrial-derived reactive oxygen species. Mol Biol Cell 21:3247–3257.  https://doi.org/10.1091/mbc.E10-01-0025CrossRefGoogle Scholar
  184. Pazmandi K, Agod Z, Kumar BV, Szabo A, Fekete T, Sogor V, Veres A, Boldogh I, Rajnavolgyi E, Lanyi A, Bacsi A (2014) Oxidative modification enhances the immunostimulatory effects of extracellular mitochondrial DNA on plasmacytoid dendritic cells. Free Radic Biol Med 77:281–290.  https://doi.org/10.1016/j.freeradbiomed.2014.09.028CrossRefGoogle Scholar
  185. Peansukmanee S, Vaughan-Thomas A, Carter SD, Clegg PD, Taylor S, Redmond C, Mobasheri A (2009) Effects of hypoxia on glucose transport in primary equine chondrocytes in vitro and evidence of reduced GLUT1 gene expression in pathologic cartilage in vivo. J Orthop Res 27:529–535.  https://doi.org/10.1002/jor.20772CrossRefGoogle Scholar
  186. Pejovic M, Stankovic A, Mitrovic DR (1992) Lactate dehydrogenase activity and its isoenzymes in serum and synovial fluid of patients with rheumatoid arthritis and osteoarthritis. J Rheumatol 19:529–533Google Scholar
  187. Perkel JM (2004) Nanoscience is out of the bottle. The Scientist 17(15):20–23Google Scholar
  188. Perrault SD, Walkey C, Jennings T, Fischer HC, Chan WC (2009) Mediating tumor targeting efficiency of nanoparticles through design. Nano Lett. 9:1909–1915CrossRefGoogle Scholar
  189. Persson H, Kobler C, Molhave K et al (2013) Fibroblasts cultured on nanowires exhibit low motility, impaired cell division, and DNA damage. Small 9:4006–4016CrossRefGoogle Scholar
  190. Petersen EJ, Nelson BC (2010) Mechanisms and measurements of nanomaterial-induced oxidative damage to DNA. Anal Bioanal Chem 398:613–650CrossRefGoogle Scholar
  191. Pieterse E, Rother N, Garsen M, Hofstra JM, Satchell SC, Hoffmann M, Loeven MA, Knaapen HK, Van Der Heijden OWH, Berden JHM, Hilbrands LB, Van Der Vlag J (2017) Neutrophil extracellular traps drive endothelialto-mesenchymal transition. Arterioscler Thromb Vasc Biol 37:1371–1379.  https://doi.org/10.1161/ATVBAHA.117.309002CrossRefGoogle Scholar
  192. Pistollato F, Abbadi S, Rampazzo E, Viola G, Della Puppa A, Cavallini L, Frasson C, Persano L, Panchision DM, Basso G (2010) Hypoxia and succinate antagonize 2-deoxyglucose effects on glioblastoma. Biochem Pharmacol 80:1517–1527.  https://doi.org/10.1016/j.bcp.2010.08.003CrossRefGoogle Scholar
  193. Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, Arcoraci V, Squadrito F, Altavilla D, Bitto A (2017) Oxidative stress: harms and benefits for human health. Oxid Med Cell Longev 2017. http://dx.doi.org/10.1155/2017/8416763
  194. Poli G, Leonarduzzi G, Biasi F et al (2004) Oxidative stress and cell signalling. Curr Med Chem 11:1163–1182CrossRefGoogle Scholar
  195. Poon HF, Calabrese V, Scapagnini G et al (2004) Free radicals and brain aging. Clin Geriatr Med 20:329–359CrossRefGoogle Scholar
  196. Poschl U (2005) Atmospheric aerosols: composition, transformation, climate and health effects. Angew Chem Int Ed Engl 44:7520CrossRefGoogle Scholar
  197. Prieditis H, Adamson IY (2002) Comparative pulmonary toxicity of various soluble metals found in urban population dusts. Exp Lung Res 28(7):563–576CrossRefGoogle Scholar
  198. Przybyszewska M, Zaborski M (2009) The effect of zinc oxide nanoparticle morphology on activity in crosslinking of carboxylated nitrile elastomer. Express Polym Lett 3:542–552CrossRefGoogle Scholar
  199. Pucino V, Bombardieri M, Pitzalis C, Mauro C (2017) Lactate at the crossroads of metabolism, inflammation, and autoimmunity. Eur J Immunol 47:14–21.  https://doi.org/10.1002/eji.201646477CrossRefGoogle Scholar
  200. Qiu Y, Liu Y, Wang L et al (2010) Surface chemistry and aspect ratio mediated cellular uptake of Au nanorods. Biomaterials 31:7606–7619CrossRefGoogle Scholar
  201. Quiñonez-Flores CM, Gonzαlez-Chαvez SA, Pacheco-Tena C (2016) Hypoxia and its implications in rheumatoid arthritis. J Biomed Sci 23:62.  https://doi.org/10.1186/s12929-016-0281-0CrossRefGoogle Scholar
  202. Ramakrishnan P, Hecht BA, Pedersen DR, Lavery MR, Maynard J, Buckwalter JA, Martin JA (2010) Oxidant conditioning protects cartilage from mechanically induced damage. J Orthop Res 28:914–920.  https://doi.org/10.1002/jor.21072CrossRefGoogle Scholar
  203. Rard Jaouen G, Vessiè Res A, Top S (2015) Ferrocifen type anti cancer drugs. Chem Soc Rev 44(14):8802–8817.  https://doi.org/10.1039/c5cs00486aCrossRefGoogle Scholar
  204. Ray PC, Yu H, Fu PP (2009) Toxicity and environmental risks of nanomaterials: challenges and future needs. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 27:1–35CrossRefGoogle Scholar
  205. Ray PC, Yu H, Fu PP (2011) Nanogold-based sensing of environmental toxins: excitement and challenges. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 29:52–89CrossRefGoogle Scholar
  206. Reinwald C, Schauer C, Csepregi JZ, Kienhöfer D, Weidner D, Malissen M, Mocsai A, Schett G, Herrmann M, Hoffmann M (2016) Reply to “Neutrophils are not required for resolution of acute gouty arthritis in mice. Nat Med 22:1384–1386.  https://doi.org/10.1038/nm.4217CrossRefGoogle Scholar
  207. Report of the US Chemical Industry Working Group (2003)Google Scholar
  208. Rodacka A, Gerszon J, Puchała M (2014) The biological significance of oxidative modifications of cysteine residues in proteins illustrated with the example of glyceraldehyde-3-phosphate dehydrogenase. Post Hig Med Dosw (Online) 68:280–290CrossRefGoogle Scholar
  209. Royal Society and Royal Academy of Engineering (2004) Nanoscience and nanotechnologies: opportunities and uncertainties. RS policy document 19/04. The Royal Society, London, p 113Google Scholar
  210. Ryan BJ, Nissim A, Winyard PG (2014) Oxidative post-translational modifications and their involvement in the pathogenesis of autoimmune diseases. Redox Biol 2:715–724.  https://doi.org/10.1016/j.redox.2014.05.004CrossRefGoogle Scholar
  211. Rzigalinski BA, Strobl JS (2009) Cadmium-containing nanoparticles: perspectives on pharmacology and toxicology of quantum dots. Toxicol Appl Pharmacol 238:280–288CrossRefGoogle Scholar
  212. Sachidanandam K, Fagan SC, Ergul A (2005) Oxidative stress and cardiovascular disease: antioxidants and unresolved issues. Cardiovasc Drug Rev 23:115–132CrossRefGoogle Scholar
  213. Saffarzadeh M, Juenemann C, Queisser MA, Lochnit G, Barreto G, Galuska SP, Lohmeyer J, Preissner KT (2012) Neutrophil extracellular traps directly induce epithelial and endothelial cell death: a predominant role of histones. PLoS One 7:e32366.  https://doi.org/10.1371/journal.pone.0032366CrossRefGoogle Scholar
  214. Sakai N, Matsui Y, Nakayama A et al (2011) Functional-dependent and size-dependent uptake of nanoparticles in pc12. J Phys Conf Ser 304:012049CrossRefGoogle Scholar
  215. Satarug S, Baker JR, Urbenjapol S, Haswell-Elkins M, Reilly PE, Williams DJ, Moore MR (2003) A global perspective on cadmium pollution and toxicity in non-occupationally exposed population. Toxicol Lett 137(1–2):65–83CrossRefGoogle Scholar
  216. Saulot V, Vittecoq O, Charlionet R, Fardellone P, Lange C, Marvin L, Machour N, Le Loët X, Gilbert D, Tron F (2002) Presence of autoantibodies to the glycolytic enzyme alpha-enolase in sera from patients with early rheumatoid arthritis. Arthritis Rheum 46:1196–1201.  https://doi.org/10.1002/art.10252CrossRefGoogle Scholar
  217. Schaller M, Burton DR, Ditzel HJ (2001) Autoantibodies to GPI in rheumatoid arthritis: linkage between an animal model and human disease. Nat Immunol 2:746–753.  https://doi.org/10.1038/90696CrossRefGoogle Scholar
  218. Schaller M, Stohl W, Benoit V, Tan S-M, Johansen L, Ditzel HJ (2006) Patients with inflammatory arthritic diseases harbor elevated serum and synovial fluid levels of free and immune-complexed glucose-6-phosphate isomerase (G6PI). Biochem Biophys Res Commun 349:838–845.  https://doi.org/10.1016/j.bbrc.2006.08.105CrossRefGoogle Scholar
  219. Schauer C, Janko C, Munoz LE, Zhao Y, Kienhöfer D, Frey B, Lell M, Manger B, Rech J, Naschberger E, Holmdahl R, Krenn V, Harrer T, Jeremic I, Bilyy R, Schett G, Hoffmann M, Herrmann M (2014) Aggregated neutrophil extracellular traps limit inflammation by degrading cytokines and chemokines. Nat Med 20:511–517.  https://doi.org/10.1038/nm.3547CrossRefGoogle Scholar
  220. Schubert D, Schmidt M, Zaiss D, Jungblut PR, Kamradt T (2002) Autoantibodies to GPI and creatine kinase in RA. Nat Immunol 3:411.  https://doi.org/10.1038/ni0502-411a411-411CrossRefGoogle Scholar
  221. Sci. Comm. Emerg. New. Identified Health Risks (SCENIHR) (2006) The appropriateness of existing methodologies to assess the potential risks associated with engineered and adventitious products of nanotechnologies. Eur. Comm., Brussels. http://ec.europa.eu/health/ph_risk/committees/04_scenihr/docs/scenihr_o_003b.pdf
  222. Scofield RH, Kurien BT, Ganick S, McClain MT, Pye Q, James JA, Schneider RI, Broyles RH, Bachmann M, Hensley K (2005) Modification of lupus-associated 60-kDa Ro protein with the lipid oxidation product 4-hydroxy-2-nonenal increases antigenicity and facilitates epitope spreading. Free Radic Biol Med 38:719–728.  https://doi.org/10.1016/J.FREERADBIOMED.2004.11.001CrossRefGoogle Scholar
  223. Selak MA, Armour SM, MacKenzie ED, Boulahbel H, Watson DG, Mansfield KD, Pan Y, Simon MC, Thompson CB, Gottlieb E (2005) Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell 7:77–85.  https://doi.org/10.1016/j.ccr.2004.11.022CrossRefGoogle Scholar
  224. Senyilmaz D, Teleman AA (2015) Chicken or the egg: warburg effect and mitochondrial dysfunction. F1000Prime Rep. 7:1–13. http://dx.doi.org/10.12703/P7-41
  225. Shaligram S, Campbell A (2013) Toxicity of copper salts is dependent on solubility profile and cell type tested. Toxicol In Vitro 27:844–851CrossRefGoogle Scholar
  226. Shen C, James SA, Dejonge MD et al (2013) Relating cytotoxicity, zinc ions and reactive oxygen in ZnO nanoparticle exposed human immune cells. Toxicol Sci 136:120–130CrossRefGoogle Scholar
  227. Shi H, Hudson LG, Liu KJ (2004) Oxidative stress and apoptosis in metal ion-induced carcinogenesis. Free Radical Biol Med 37:582–593CrossRefGoogle Scholar
  228. Shi Q, Vaillancourt F, Côté V, Fahmi H, Lavigne P, Afif H, Di Battista JA, Fernandes JC, Benderdour M (2006a) Alterations of metabolic activity in human osteoarthritic osteoblasts by lipid peroxidation end product 4-hydroxynonenal. Arthritis Res Ther 8:R159.  https://doi.org/10.1186/ar2066CrossRefGoogle Scholar
  229. Shi D, Liu S, Li H, Shen X, Yu P, Cheng J, Gong X (2006b) Prog Biochem Biophys 869–876Google Scholar
  230. Shi LZ, Wang R, Huang G, Vogel P, Neale G, Green DR, Chi H (2011) HIF1alphadependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J Exp Med 208:1367–1376.  https://doi.org/10.1084/jem.20110278CrossRefGoogle Scholar
  231. Shimada K, Crother TR, Karlin J, Dagvadorj J, Chiba N, Chen S, Ramanujan VK, Wolf AJ, Vergnes L, Ojcius DM, Rentsendorj A, Vargas M, Guerrero C, Wang Y, Fitzgerald KA, Underhill DM, Town T, Arditi M (2012) Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity 36:401–414.  https://doi.org/10.1016/j.immuni.2012.01.009CrossRefGoogle Scholar
  232. Shukla RK, Kumar A, Pandey AK et al (2011a) Titanium dioxide nanoparticles induce oxidative stress-mediated apoptosis in human keratinocyte cells. J Biomed Nanotechnol 7:100–101CrossRefGoogle Scholar
  233. Shukla RK, Sharma V, Pandey AK et al (2011b) ROS-mediated genotoxicity induced by titanium dioxide nanoparticles in human epidermal cells. Toxicol In Vitro 25:231–241CrossRefGoogle Scholar
  234. Shvedova AA, Castranova V, Kisin ER et al (2003) Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells. J Toxicol Environ Health a 66:1909–1926CrossRefGoogle Scholar
  235. Sohaebuddin SK, Thevenot PT, Baker D et al (2010) Nanomaterial cytotoxicity is composition, size, and cell type dependent. Part Fibre Toxicol 7(22):1–17Google Scholar
  236. Sohal RS, Mockett RJ, Orr WC (2002) Mechanisms of aging: an appraisal of the oxidative stress hypothesis. Free Radic Biol Med 33:575–586CrossRefGoogle Scholar
  237. Stadtman ER, Berlett BS (1997) Reactive oxygen-mediated protein oxidation in aging and disease. Chem Res Toxicol 10:485–494CrossRefGoogle Scholar
  238. Stuart JA, Brown MF (2006) Mitochondrial DNA maintenance and bioenergetics. Biochim Biophys Acta—Bioenerg 1757:79–89.  https://doi.org/10.1016/j.bbabio.2006.01.003CrossRefGoogle Scholar
  239. Studer AM, Limbach LK, Van Duc L et al (2010) Nanoparticle cytotoxicity depends on intracellular solubility: comparison of stabilized copper metal and degradable copper oxide nanoparticles. Toxicol Lett 197:169–174CrossRefGoogle Scholar
  240. Sun Z, Yang P (2004) Role of imbalance between neutrophil elastase and alpha 1-antitrypsin in cancer development and progression. Lancet Oncol. 5:182–190.  https://doi.org/10.1016/S1470-2045(04)01414-7CrossRefGoogle Scholar
  241. Surowiec I, Ärlestig L, Rantapää-Dahlqvist S, Trygg J (2016) Metabolite and lipid profiling of biobank plasma samples collected prior to onset of rheumatoid arthritis. PLoS ONE 11:e0164196.  https://doi.org/10.1371/journal.pone.0164196CrossRefGoogle Scholar
  242. Sycheva LP, Zhurkov VS, Iurchenko VV et al (2011) Investigation of genotoxic and cytotoxic effects of micro- and nanosized titanium dioxide in six organs of mice in vivo. Mutat Res 726:8–14CrossRefGoogle Scholar
  243. Tannahill GM, Curtis AM, Adamik J, Palsson-McDermott EM, McGettrick AF, Goel G, Frezza C, Bernard NJ, Kelly B, Foley NH, Zheng L, Gardet A, Tong Z, Jany SS, Corr SC, Haneklaus M, Caffrey BE, Pierce K, Walmsley S, Beasley FC, Cummins E, Nizet V, Whyte M, Taylor CT, Lin H, Masters SL, Gottlieb E, Kelly VP, Clish C, Auron PE, Xavier RJ, O’Neill LAJ (2013) Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature 496:238–242.  https://doi.org/10.1038/nature11986CrossRefGoogle Scholar
  244. Tsuji N, Tsuji T, Ohashi N, Kato A, Fujigaki Y, Yasuda H (2016) Role of mitochondrial DNA in septic AKI via toll-like receptor 9. J Am Soc Nephrol 27:2009–2020.  https://doi.org/10.1681/ASN.2015040376CrossRefGoogle Scholar
  245. Ukaji F, Kitajima I, Kubo T, Shimizu C, Nakajima T, Maruyama I (1999) Serum samples of patients with rheumatoid arthritis contain a specific autoantibody to “denatured” aldolase A in the osteoblast-like cell line, MG-63. Ann Rheum Dis 58:169–174CrossRefGoogle Scholar
  246. Valavanidis A, Vlachogianni T, Fiotakis C (2009) 8-hydroxy-2’-deoxyguanosine (8-OHdG): a critical biomarker of oxidative stress and carcinogenesis. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 27:120–139CrossRefGoogle Scholar
  247. Valko M, Rhodes CJ, Moncol J et al (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160:1–40CrossRefGoogle Scholar
  248. Valko M, Leibfritz D, Moncol J et al (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84CrossRefGoogle Scholar
  249. Vega RB, Horton JL, Kelly DP (2015) Maintaining ancient organelles: mitochondrial biogenesis and maturation. Circ Res 116:1820–1834.  https://doi.org/10.1161/CIRCRESAHA.116.305420CrossRefGoogle Scholar
  250. Vevers WF, Jha AN (2008) Genotoxic and cytotoxic potential of titanium dioxide (TiO2) nanoparticles on fish cells in vitro. Ecotoxicology 17:410–420CrossRefGoogle Scholar
  251. Wang CH, Jeng JS, Yip PK, Chen CL, Hsu LI, Hsueh YM, Chiou HY, Wu MM, Chen CJ (2002) Biological gradient between long-term arsenic exposure and carotid atherosclerosis. Circulation 105(15):1804–1809CrossRefGoogle Scholar
  252. Wang JJ, Sanderson BJ, Wang H (2007) Cyto- and genotoxicity of ultrafine TiO2 particles in cultured human lymphoblastoid cells. Mutat Res 628:99–106CrossRefGoogle Scholar
  253. Wang S, Lu W, Tovmachenko O et al (2008) Challenge in understanding size and shape dependent toxicity of gold nanomaterials in human skin keratinocytes. Chem Phys Lett 463:145–149CrossRefGoogle Scholar
  254. Wang S-H, Lee C-W, Chiou A et al (2010) Size-dependent endocytosis of gold nanoparticles studied by threedimensional mapping of plasmonic scattering images. J Nanobiotechnol 8:33–45CrossRefGoogle Scholar
  255. Wang Y, Aker WG, Hwang HM et al (2011a) A study of the mechanism of in vitro cytotoxicity of metal oxide nanoparticles using catfish primary hepatocytes and human HepG2 cells. Sci Total Environ 409:4753–4762CrossRefGoogle Scholar
  256. Wang Z, Li J, Zhao J et al (2011b) Toxicity and internalization of CuO nanoparticles to prokaryotic alga Microcystis aeruginosa as affected by dissolved organic matter. Environ Sci Technol 45:6032–6040CrossRefGoogle Scholar
  257. Wang B, Yin J-J, Zhou X et al (2012) Physicochemical origin for free radical generation of iron oxide nanoparticles in biomicroenvironment: catalytic activities mediated by surface chemical states. J Phys Chem C 117:383–392CrossRefGoogle Scholar
  258. Wang C-C, Wang S, Xia Q et al (2013) Phototoxicity of zinc oxide nanoparticles in HaCaT keratinocytes e generation of oxidative DNA damage during UVA and visible light irradiation. J Nanosci Nanotechnol 13:3880–3888CrossRefGoogle Scholar
  259. Wardman P, Candeias LP (1996) Fenton chemistry: an introduction. Radiat Res 145:523–531CrossRefGoogle Scholar
  260. Warheit DB (2004) Nanoparticles: health impacts? Mater Today 7:32–35CrossRefGoogle Scholar
  261. Wei X, Shao B, He Z, Ye T, Luo M, Sang Y, Liang X, Wang W, Luo S, Yang S, Zhang S, Gong C, Gou M, Deng H, Zhao Y, Yang H, Deng S, Zhao C, Yang L, Qian Z, Li J, Sun X, Han J, Jiang C, Wu M, Zhang Z (2015) Cationic nanocarriers induce cell necrosis through impairment of Na+/K+-ATPase and cause subsequent inflammatory response. Cell Res 25:237–253.  https://doi.org/10.1038/cr.2015.9CrossRefGoogle Scholar
  262. Wilkie-Grantham RP, Magon NJ, Harwood DT, Kettle AJ, Vissers MC, Winterbourn CC, Hampton MB (2015) Myeloperoxidase-dependent lipid peroxidation promotes the oxidative modification of cytosolic proteins in phagocytic neutrophils. J Biol Chem Chem 290:9896–9905.  https://doi.org/10.1074/jbc.M114.613422CrossRefGoogle Scholar
  263. Winnik FM, Maysinger D (2013) Quantum dot cytotoxicity and ways to reduce it. Acc Chem Res 46:672–680CrossRefGoogle Scholar
  264. Winterbourn CC, Kettle AJ, Hampton MB (2016) Reactive oxygen species and neutrophil function. Annu Rev Biochem 85:765–792.  https://doi.org/10.1146/annurev-biochem-060815-014442CrossRefGoogle Scholar
  265. Won J-H, Park S, Hong S, Son S, Yu J-W (2015) Rotenone-induced impairment of mitochondrial electron transport chain confers a selective priming signal for NLRP3 inflammasome activation. J Biol Chem 290:27425–27437.  https://doi.org/10.1074/jbc.M115.667063CrossRefGoogle Scholar
  266. Wruck CJ, Fragoulis A, Gurzynski A, Brandenburg L-O, Kan YW, Chan K, Hassenpflug J, Freitag-Wolf S, Varoga D, Lippross S, Pufe T (2011) Role of oxidative stress in rheumatoid arthritis: insights from the Nrf2-knockout mice. Ann Rheum Dis 70:844–850.  https://doi.org/10.1136/ard.2010.132720CrossRefGoogle Scholar
  267. Xia Q, Yin JJ, Cherng SH et al (2006) UVA photoirradiation of retinyl palmitate—formation of singlet oxygen and superoxide, and their role in induction of lipid peroxidation. Toxicol Lett 163:30–43CrossRefGoogle Scholar
  268. Xia Q, Yin JJ, Fu PP et al (2007) Photo-irradiation of Aloe vera by UVA e formation of free radicals, singlet oxygen, superoxide, and induction of lipid peroxidation. Toxicol Lett 168:165–175CrossRefGoogle Scholar
  269. Xia T, Kovochich M, Liong M et al (2008) Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2:2121–2134CrossRefGoogle Scholar
  270. Xia Q, Boudreau MD, Zhou Y-T et al (2011) UVB photoirradiation of Aloe vera formation of free radicals, singlet oxygen, superoxide, and induction of lipid peroxidation. J Food Drug Anal 19:396–402Google Scholar
  271. Xia Q, Chiang H-M, Zhou Y-T et al (2012) Phototoxicity of kava e formation of reactive oxygen species leading to lipid peroxidation and DNA damage. Am J Chin Med 40:1271–1288CrossRefGoogle Scholar
  272. Xiang Y, Sekine T, Nakamura H, Imajoh-Ohmi S, Fukuda H, Nishioka K, Kato T (2004) Proteomic surveillance of autoimmunity in osteoarthritis: identification of triosephosphate isomerase as an autoantigen in patients with osteoarthritis. Arthritis Rheum 50:1511–1521.  https://doi.org/10.1002/art.20189CrossRefGoogle Scholar
  273. Xiao M, Zhong H, Xia L, Tao Y, Yin H (2017) Pathophysiology of mitochondrial lipid oxidation: role of 4-hydroxynonenal (4-HNE) and other bioactive lipids in mitochondria. Free Radic Biol Med 111:316–327.  https://doi.org/10.1016/j.freeradbiomed.2017.04.363CrossRefGoogle Scholar
  274. The Lux Spotlight newsletter includes: Select research from our breadth of services hand-picked by our analysts. Lux webinars, company briefings, press releases, podcasts, and videos. http://www.luxresearchinc.com, http://web.luxresearchinc.com/subscribe-to-the-lux-spotlight-newsletter
  275. Yang L, Watts DJ (2005) Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol Lett 158:122–132CrossRefGoogle Scholar
  276. Yang X, Gondikas AP, Marinakos SM et al (2011) Mechanism of silver nanoparticle toxicity is dependent on dissolved silver and surface coating in Caenorhabditis elegans. Environ Sci Technol 46:1119–1127CrossRefGoogle Scholar
  277. Yang Z, Fujii H, Mohan SV, Goronzy JJ, Weyand CM (2013) Phosphofructokinase deficiency impairs ATP generation, autophagy, and redox balance in rheumatoid arthritis T cells. J Exp Med 210:2119–2134.  https://doi.org/10.1084/jem.20130252CrossRefGoogle Scholar
  278. Yin JJ, Lao F, Meng J et al (2008) Inhibition of tumor growth by endohedral metallofullerenol nanoparticles optimized as reactive oxygen species scavenger. Mol Pharmacol 74:1132–1140CrossRefGoogle Scholar
  279. Yin JJ, Lao F, Fu PP et al (2009) The scavenging of reactive oxygen species and the potential for cell protection by functionalized fullerene materials. Biomaterials 30:611–621CrossRefGoogle Scholar
  280. Yin JJ, Zhao B, Xia Q et al (2012a) Electron spin resonance spectroscopy for studying the generation and scavenging of reactive oxygen species by nanomaterials. In: Liang X-J (ed) Nanopharmaceuticals: the potential application of nanomaterials. World Scientific Publishing Company, Singapore, pp 375–400CrossRefGoogle Scholar
  281. Yin JJ, Liu J, Ehrenshaft M et al (2012b) Phototoxicity of nano titanium dioxides in HaCaT keratinocytes e generation of reactive oxygen species and cell damage. Toxicol Appl Pharmacol 263:81–88CrossRefGoogle Scholar
  282. Yin J-J, Fu PP, Lutterodt H et al (2012c) Dual role of selected antioxidants found in dietary supplements: crossover between anti-and pro-oxidant activities in the presence of copper. J Agric Food Chem 60:2554–2561CrossRefGoogle Scholar
  283. Yoshida T, Yoshikawa T, Nabeshi H et al (2012) Relation analysis between intracellular distribution of nanomaterials, ROS generation and DNA damage. Yakugaku Zasshi 132:295–300CrossRefGoogle Scholar
  284. Zhang W, Wang C, Li Z et al (2012) Unraveling stress-induced toxicity properties of graphene oxide and the underlying mechanism. Adv Mater 24:5391–5397CrossRefGoogle Scholar
  285. Zhang J-Z, Liu Z, Liu J, Ren J-X, Sun T-S (2014) Mitochondrial DNA induces inflammation and increases TLR9/NF-κB expression in lung tissue. Int J Mol Med 33:817–824.  https://doi.org/10.3892/ijmm.2014.1650CrossRefGoogle Scholar
  286. Zhao K, Zhang L, Wang J et al (2013) Surface structure-dependent molecular oxygen activation of BiOCl single-crystalline nanosheets. J Am Chem Soc 135:15750–15753CrossRefGoogle Scholar
  287. Zhi L, Ustyugova IV, Chen X, Zhang Q, Wu MX (2012) Enhanced Th17 differentiation and aggravated arthritis in IEX-1-deficient mice by mitochondrial reactive oxygen species-mediated signaling. J Immunol 189:1639–1647.  https://doi.org/10.4049/jimmunol.1200528CrossRefGoogle Scholar
  288. Zhong H, Yin H (2015) Role of lipid peroxidation derived 4-hydroxynonenal (4-HNE) in cancer: focusing on mitochondria. Redox Biol. 4:193–199.  https://doi.org/10.1016/j.redox.2014.12.011CrossRefGoogle Scholar
  289. Zhou R, Yazdi AS, Menu P, Tschopp J (2010) A role for mitochondria in NLRP3 inflammasome activation. Nature.  https://doi.org/10.1038/nature09663CrossRefGoogle Scholar
  290. Zhou R, Yazdi AS, Menu P, Tschopp J (2011) A role for mitochondria in NLRP3 inflammasome activation. Nature 469:221–225.  https://doi.org/10.1038/nature09663CrossRefGoogle Scholar
  291. Zhu L, Chang DW, Dai L et al (2007) DNA damage induced by multiwalled carbon nanotubes in mouse embryonic stem cells. Nano Lett 7:3592–3597CrossRefGoogle Scholar
  292. Zhu Z-J, Yeh Y-C, Tang R et al (2011) Stability of quantum dots in live cells. Nat Chem 3:963–968CrossRefGoogle Scholar
  293. Zhu X, Hondroulis E, Liu W et al (2013) Biosensing approaches for rapid genotoxicity and cytotoxicity assays upon nanomaterial exposure. Small 9:1821–1830CrossRefGoogle Scholar
  294. Zimmerman MC, Clemens DL, Duryee MJ, Sarmiento C, Chiou A, Hunter CD, Tian J, Klassen LW, O’Dell JR, Thiele GM, Mikuls TR, Anderson DR (2017) Direct antioxidant properties of methotrexate: inhibition of malondialdehyde-acetaldehyde-protein adduct formation and superoxide scavenging. Redox Biol 13:588–593.  https://doi.org/10.1016/j.redox.2017.07.018CrossRefGoogle Scholar
  295. Zou Y, Zeng S, Huang M, Qiu Q, Xiao Y, Shi M, Zhan Z, Liang L, Yang X, Xu H (2017) Inhibition of 6-phosphofructo-2-kinase suppresses fibroblast-like synoviocytes-mediated synovial inflammation and joint destruction in rheumatoid arthritis. Br J Pharmacol 174:893–908.  https://doi.org/10.1111/bph.13762CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Physical Chemistry and Nanoscience, Department of Chemistry, Faculty of ScienceAl Baha UniversityBaljurashiSaudi Arabia

Personalised recommendations