Advertisement

Antioxidant Therapeutic Defenses Toward Redox Biology and Oxidative Stress

  • Loutfy H. MadkourEmail author
Chapter
Part of the Nanomedicine and Nanotoxicology book series (NANOMED)

Abstract

Oxidative stress that occurs either due to the overproduction of oxidants or their elimination by antioxidant defense system is weakened. An antioxidant defense system prevents oxidative damage to cell, and to ensure the host against the harmful impacts of ROS, numerous antioxidative safeguard mechanisms have progressed, whereas oxidant–antioxidant balance of an individual is mainly affected by diet regime, physical activity, and level of stress. An extensive variety of ligand–receptor associations have been shown to create intracellular ROS. ROS can enact an assortment of members of signaling pathways, for example, transcription factors, protein phosphatases, and protein kinases. Despite the fact that ROS are produced intracellularly by numerous sources, including mitochondria, the NADPH oxidases specifically have been associated with receptor-mediated signaling. There are various types of antioxidants (endogenous, exogenous, and proteins) working to cope with ROS- and free radicals’-associated stress. Different groups of antioxidants were along with their mechanisms. However, large multicentered clinical trials are needed to be conducted to prove the safety and efficacy of the polyphenols for their therapeutic use.

Keywords

Enzymatic antioxidants Non-enzymatic antioxidants Oxidative stress ROS Redox Rheumatic diseases 

References

  1. Adamson S, Leitinger N (2011) Phenotypic modulation of macrophages in response to plaque lipids. Curr Opin Lipidol 22:335–342Google Scholar
  2. Adler V, Yin Z, Fuchs SY, Benezra M, Rosario L et al (1999) Regulation of JNK signalling by GSTp. EMBO J 18:1321–1334CrossRefGoogle Scholar
  3. Adorni MP, Zimetti F, Billheimer JT, Wang N, Rader DJ, Phillips MC, Rothblat GH (2007) The roles of different pathways in the release of cholesterol from macrophages. J Lipid Res 48:2453–2462 PubMed: 17761631CrossRefGoogle Scholar
  4. Ahmed S, Anuntiyo J, Malemud CJ, Haqqi TM (2005) Biological basis for the use of botanicals in osteoarthritis and rheumatoid arthritis: a review. Evid Based Complement Alternat Med 2:301–308CrossRefGoogle Scholar
  5. Aiello RJ, Brees D, Bourassa PA, Royer L, Lindsey S, Coskran T, Haghpassand M, Francone OL (2002) Increased atherosclerosis in hyperlipidemic mice with inactivation of ABCA1 in macrophages. Arterioscler Thromb Vasc Biol 22:630–637 PubMed: 11950702Google Scholar
  6. Ali AM, Habeeb RA, El-Azizi NO, Khattab DA, Abo-Shady RA, Elkabarity RH (2014) Higher nitric oxide levels are associated with disease activity in Egyptian rheumatoid arthritis patients. Rev Bras Reumatol 54:446–451CrossRefGoogle Scholar
  7. Allen BW, Demchenko IT, Piantadosi CA (1985) Two faces of nitric oxide: implications for cellular mechanisms of oxygen toxicity. J Appl Physiol 2009(106):662–667Google Scholar
  8. Allen IC, Scull MA, Moore CB, Holl EK, McElvania-TeKippe E, Taxman DJ, Guthrie EH, Pickles RJ, Ting JP (2009) The NLRP3 inflammasome mediates in vivo innate immunity to influenza A virus through recognition of viral RNA. Immunity 30:556–565CrossRefGoogle Scholar
  9. Aratani Y, Kura F, Watanabe H, Akagawa H, Takano Y, Suzuki K, Dinauer MC, Maeda N, Koyama H (2004) In vivo role of myeloperoxidase for the host defense. Jpn J Infect Dis 57:S15Google Scholar
  10. Armstrong RN (1997) Structure, catalytic mechanism, and evolution of the glutathione transferases. Chem Res Toxicol 10:2–18CrossRefGoogle Scholar
  11. Arthur JR (2000) The glutathione peroxidases. Cell Mol Life Sci 57:1825–1835CrossRefGoogle Scholar
  12. Ashida H, Mimuro H, Ogawa M, Kobayashi T, Sanada T, Kim M, Sasakawa C (2011) Cell death and infection: a double-edged sword for host and pathogen survival. J Cell Biol 195:931–942CrossRefGoogle Scholar
  13. Azuma Y, Takada M, Shin HW, Kioka N, Nakayama K, Ueda K (2009) Retroendocytosis pathway of ABCA1/apoA-I contributes to HDL formation. Genes Cells 14:191–204 PubMed: 19170766CrossRefGoogle Scholar
  14. Baldan A, Pei L, Lee R, Tarr P, Tangirala RK, Weinstein MM, Frank J, Li AC, Tontonoz P, Edwards PA (2006) Impaired development of atherosclerosis in hyperlipidemic Ldlr/ and ApoE/ mice transplanted with Abcg1/ bone marrow. Arterioscler Thromb Vasc Biol 26:2301–2307 PubMed: 16888235CrossRefGoogle Scholar
  15. Baldan A, Gomes AV, Ping P, Edwards PA (2008) Loss of ABCG1 results in chronic pulmonary inflammation. J Immunol 180:3560–3568 PubMed: 18292583CrossRefGoogle Scholar
  16. Balstad TR, Carlsen H, Myhrstad MC, Kolberg M, Reiersen H, Gilen L, Ebihara K, Paur I, Blomhoff R (2011) Coffee, broccoli and spices are strong inducers of electrophile response element-dependent transcription in vitro and in vivo—studies in electrophile response element transgenic mice. Mol Nutr Food Res 55:185–197CrossRefGoogle Scholar
  17. Bandt MD, Grossin M, Driss F, Pincemail J, Babin-Chevaye C, Pasquier C (2002) Vitamin E uncouples joint destruction and clinical inflammation in a transgenic mouse model of rheumatoid arthritis. Arthritis Rheum 46:522–532CrossRefGoogle Scholar
  18. Basso F, Amar MJ, Wagner EM, Vaisman B, Paigen B, Santamarina-Fojo S, Remaley AT (2006) Enhanced ABCG1 expression increases atherosclerosis in LDLr-KO mice on a western diet. Biochem Biophys Res Commun 351:398–404 PubMed: 17070501CrossRefGoogle Scholar
  19. Bates SR, Tao JQ, Collins HL, Francone OL, Rothblat GH (2005) Pulmonary abnormalities due to ABCA1 deficiency in mice. Am J Physiol Lung Cell Mol Physiol 289:L980–L989 PubMed: 16055479CrossRefGoogle Scholar
  20. Bazzichi L, Ciompi M, Betti L et al (2002) Impaired glutathione reductase activity and levels of collagenase and elastase in synovial fluid in rheumatoid arthritis. Clin Exp Rheumatol 20:761–766Google Scholar
  21. Beckman JS, Koppenol WH (1996) Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol 271:C1424–C1437CrossRefGoogle Scholar
  22. Behrend L, Henderson G, Zwacka RM (2003) Reactive oxygen species in oncogenic transformation. Biochem Soc Trans 31:1441–1444CrossRefGoogle Scholar
  23. Ben-Ari J, Wolach O, Gavrieli R, Wolach B (2012) Infections associated with chronic granulomatous disease: linking genetics to phenotypic expression. Expert Rev Anti Infect Ther 10:881–894CrossRefGoogle Scholar
  24. Bensinger SJ, Bradley MN, Joseph SB, Zelcer N, Janssen EM, Hausner MA, Shih R, Parks JS, Edwards PA, Jamieson BD, Tontonoz P (2008) LXR signaling couple’s sterol metabolism to proliferation in the acquired immune response. Cell 134:97–111 PubMed: 18614014CrossRefGoogle Scholar
  25. Bianchi M, Hakkim A, Brinkmann V, Siler U, Seger RA, Zychlinsky A, Reichenbach J (2009) Restoration of NET formation by gene therapy in CGD controls aspergillosis. Blood 114:2619–2622CrossRefGoogle Scholar
  26. Bindoli A, Fukuto JM, Forman HJ (2008) Thiol chemistry in peroxidase catalysis and redox signaling. Antioxid Redox Signal 10:1549–1564CrossRefGoogle Scholar
  27. Bisti S, Konidou G, Boelaert J, Lebastard M, Soteriadou K (2006) The prevention of the growth of Leishmania major progeny in BALB/c iron-loaded mice: a process coupled to increased oxidative burst, the amplitude and duration of which depend on initial parasite developmental stage and dose. Microbes Infect 8:1464–1472CrossRefGoogle Scholar
  28. Boyle JJ (2012) Heme and haemoglobin direct macrophage Mhem phenotype and counter foam cell formation in areas of intraplaque haemorrhage. Curr Opin Lipidol 23:453–461CrossRefGoogle Scholar
  29. Boyle JJ, Johns M, Kampfer T, Nguyen AT, Game L, Schaer DJ, Mason JC, Haskard DO (2012) Activating transcription factor 1 directs Mhem atheroprotective macrophages through coordinated iron handling and foam cell protection. Circ Res 110:20–33CrossRefGoogle Scholar
  30. Breuer W, Epsztejn S, Cabantchik ZI (1996) Dynamics of the cytosolic chelatable iron pool of K562 cells. FEBS Lett 382:304–308CrossRefGoogle Scholar
  31. Breuer W, Shvartsman M, Cabantchik ZI (2008) Intracellular labile iron. Int J Biochem Cell Biol 40:350–354CrossRefGoogle Scholar
  32. Brigelius-Flohe R, Flohe L (2011) Basic principles and emerging concepts in the redox control of transcription factors. Antioxid Redox Signal 15:2335–2381CrossRefGoogle Scholar
  33. Buettner GR, Jurkiewicz BA (1996) Catalytic metals, ascorbate and free radicals: combinations to avoid. Radiat Res 145:532–541CrossRefGoogle Scholar
  34. Bunker VW (1992) Free radicals, antioxidants and ageing. Med Lab Sci 49:299–312Google Scholar
  35. Burgess B, Naus K, Chan J, Hirsch-Reinshagen V, Tansley G, Matzke L, Chan B, Wilkinson A, Fan J, Donkin J, Balik D, Tanaka T, Ou G, Dyer R, Innis S, McManus B, Lutjohann D, Wellington C (2008) Overexpression of human ABCG1 does not affect atherosclerosis in fat-fed ApoE-deficient mice. Arterioscler Thromb Vasc Biol 28:1731–1737 PubMed: 18599800CrossRefGoogle Scholar
  36. Burke MF, Khera AV, Rader DJ (2010) Polyphenols and cholesterol efflux: is coffee the next red wine? Circ Res 106:627–629CrossRefGoogle Scholar
  37. Caltagirone A, Weiss G, Pantopoulos K (2001) Modulation of cellular iron metabolism by hydrogen peroxide. Effects of H2O2 on the expression and function of iron-responsive element-containing mRNAs in B6 fibroblasts. J Biol Chem 276:19738–19745CrossRefGoogle Scholar
  38. Cano P, Poliandri AHB, Jimenez V, Cardinali DP, Esquifino AI (2007) Cadmium-induced changes in Per 1 and Per 2 gene expression in rat hypothalamus and anterior pituitary: effect of melatonin. Toxicol Lett 172:131–136CrossRefGoogle Scholar
  39. Carneiro LA, Travassos LH, Soares F, Tattoli I, Magalhaes JG, Bozza MT, Plotkowski MC, Sansonetti PJ, Molkentin JD, Philpott DJ, Girardin SE (2009) Shigella induces mitochondrial dysfunction and cell death in nonmyleoid cells. Cell Host Microbe 5:123–136CrossRefGoogle Scholar
  40. Casas AT, Hubsch AP, Rogers BC, Doran JE (1995) Reconstituted high-density lipoprotein reduces LPS-stimulated TNF alpha. J Surg Res 59:544–552 PubMed: 7475000CrossRefGoogle Scholar
  41. Cavin C, Delatour T, Marin-Kuan M, Fenaille F, Holzhauser D, Guignard G, Bezencon C, Piguet D, Parisod V, Richoz-Payot J, Schilter B (2009) Ochratoxin A-mediated DNA and protein damage: roles of nitrosative and oxidative stresses. Toxicol Sci 110:84–94CrossRefGoogle Scholar
  42. Cedergren J, Forslund T, Sundqvist T, Skogh T (2007) Intracellular oxidative activation in synovial fluid neutrophils from patients with rheumatoid arthritis but not from other arthritis patients. J Rheumatol 34:2162–2170Google Scholar
  43. Cerhan JR, Saag KG, Merlino LA, Mikuls TR, Criswell LA (2003) Antioxidant micronutrients and risk of rheumatoid arthritis in a cohort of older women. Am J Epidemiol 157:345–354CrossRefGoogle Scholar
  44. Challa S, Chan FK (2010) Going up in flames: necrotic cell injury and inflammatory diseases. Cell Mol Life Sci 67:3241–3253CrossRefGoogle Scholar
  45. Chandran B, Goel A (2012) A randomized, pilot study to assess the efficacy and safety of curcumin in patients with active rheumatoid arthritis. Phytother Res 26:1719–1725CrossRefGoogle Scholar
  46. Chen W, Sun Y, Welch C, Gorelik A, Leventhal AR, Tabas I, Tall AR (2001) Preferential ATP-binding cassette transporter A1-mediated cholesterol efflux from late endosomes/lysosomes. J Biol Chem 276:43564–43569 PubMed: 11559713CrossRefGoogle Scholar
  47. Chen W, Wang N, Tall AR (2005) A PEST deletion mutant of ABCA1 shows impaired internalization and defective cholesterol efflux from late endosomes. J Biol Chem 280:29277–29281 PubMed: 15951431CrossRefGoogle Scholar
  48. Chen M, Li W, Wang N, Zhu Y, Wang X (2007) ROS and NFkappaB but not LXR mediate IL-1beta signaling for the downregulation of ATP-binding cassette transporter A1. Am J Physiol Cell Physiol 292:C1493–C1501CrossRefGoogle Scholar
  49. Cherng SH, Xia Q, Blankenship LR et al (2005) Photodecomposition of retinyl palmitate in ethanol by UVA light-formation of photodecomposition products, reactive oxygen species, and lipid peroxides. Chem Res Toxicol 18:129–138CrossRefGoogle Scholar
  50. Chiang HM, Xia Q, Zou X et al (2012) Nanoscale ZnO induces cytotoxicity and DNA damage in human cell lines and rat primary neuronal cells. J Nanosci Nanotechnol 12:2126–2135CrossRefGoogle Scholar
  51. Chlosta S, Fishman DS, Harrington L, Johnson EE, Knutson MD, Wessling-Resnick M, Cherayil BJ (2006) The iron efflux protein ferroportin regulates the intracellular growth of Salmonella enterica. Infect Immun 74:3065–3067CrossRefGoogle Scholar
  52. Cho S-G, Lee YH, Park H-S, Ryoo K, Kang KW et al (2001) Glutathione S-transferase Mu modulates the stress activated signals by suppressing apoptosis signal-regulating kinase 1. J Biol Chem 276:12749–12755CrossRefGoogle Scholar
  53. Chu FF, Doroshow JH, Esworthy RS (1993) Expression, characterization, and tissue distribution of a new cellular selenium-dependent glutathione peroxidase, GSHPx-GI. J Biol Chem 268:2571–2576Google Scholar
  54. Comhair SA, Bhathena PR, Farver C, Thunnissen FB, Erzurum SC (2001) Extracellular glutathione peroxidase induction in asthmatic lungs: evidence for redox regulation of expression in human airway epithelial cells. FASEB J 15:70–78CrossRefGoogle Scholar
  55. Conner GE, Salathe M, Forteza R (2002) Lactoperoxidase and hydrogen peroxide metabolism in the airway. Am J Respir Crit Care Med 166:S57–S61CrossRefGoogle Scholar
  56. Costa JG, Saraiva N, Guerreiro PS, Louro H, Silva MJ, Miranda JP, Castro M, Batinic-Haberle I, Fernandes AS, Oliveira NG (2016) Ochratoxin A-induced cytotoxicity, genotoxicity and reactive oxygen species in kidney cells: an integrative approach of complementary endpoints. Food Chem Toxicol 87:65–76CrossRefGoogle Scholar
  57. Costa-Mattioli M, Sonenberg N (2008) RAPping production of type I interferon in pDCs through mTOR. Nat Immunol 9:1097–1099CrossRefGoogle Scholar
  58. Curello S, Ceconi C, Bigoli C, Ferrari R, Albertini A, Guarnieri C (1985) Changes in the cardiac glutathione status after ischemia and reperfusion. Experientia 41:42–43CrossRefGoogle Scholar
  59. Dai L, Lamb D, Leake D et al (2000) Evidence for oxidised low density lipoprotein in synovial fluid from rheumatoid arthritis patients. Free Radic Res 32:479–486CrossRefGoogle Scholar
  60. Dai L, Claxson A, Marklund S et al (2003) Amelioration of antigen-induced arthritis in rats by transfer of extracellular superoxide dismutase and catalase genes. Gene Ther 10:550–558CrossRefGoogle Scholar
  61. Dalle-Donne I, Rossi R, Giustarini D, Milzani A, Colombo R (2003) Protein carbonyl groups as biomarkers of oxidative stress. Clin Chim Acta 329:23–38CrossRefGoogle Scholar
  62. Darlington LG, Stone TW (2001) Antioxidants and fatty acids in the amelioration of rheumatoid arthritis and related disorders. Br J Nutr 85:251–269CrossRefGoogle Scholar
  63. Das NK, Biswas S, Solanki S, Mukhopadhyay CK (2009) Leishmania donovani depletes labile iron pool to exploit iron uptake capacity of macrophage for its intracellular growth. Cell Microbiol 11:83–94CrossRefGoogle Scholar
  64. Delaunay A, Pflieger D, Barrault MB, Vinh J, Toledano MB (2002) A thiol peroxidase is an H2O2 receptor and redox-transducer in gene activation. Cell 111:471–481CrossRefGoogle Scholar
  65. Denis M, Landry YD, Zha X (2008) ATP-binding cassette A1-mediated lipidation of apolipoprotein A-I occurs at the plasma membrane and not in the endocytic compartments. J Biol Chem 283:16178–16186 PubMed: 18385134CrossRefGoogle Scholar
  66. Di Giacomo G, Rizza S, Montagna C, Filomeni G (2012) Established principles and emerging concepts on the interplay between mitochondrial physiology and S-(De)nitrosylation: implications in cancer and neurodegeneration. Int J Cell Biol 2012:361872CrossRefGoogle Scholar
  67. Dickinson DA, Forman HJ (2002) Glutathione in defense and signaling: lessons from a small thiol. Ann N Y Acad Sci 973:488–504CrossRefGoogle Scholar
  68. Dixon DP, Hawkins T, Hussey PJ, Edwards R (2009) Enzyme activities and subcellular localization of members of the Arabidopsis glutathione transferase superfamily. J Exp Bot 60:1207–1218CrossRefGoogle Scholar
  69. Donato LJ, Noy N (2005) Suppression of mammary carcinoma growth by retinoic acid: proapoptotic genes are targets for retinoic acid receptor and cellular retinoic acid-binding protein II signaling. Cancer Res 65:8193–8199CrossRefGoogle Scholar
  70. Dorion S, Lambert H, Landry J (2002) Activation of the p38 signaling pathway by heat shock involves the dissociation of glutathione S-transferase Mu from Ask1. J Biol Chem 277:30792–30797CrossRefGoogle Scholar
  71. Dorn BR, Dunn WA Jr, Progulske-Fox A (2001) Porphyromonas gingivalis traffics to autophagosomes in human coronary artery endothelial cells. Infect Immun 69:5698–5708CrossRefGoogle Scholar
  72. Dostert C, Petrilli V, Van Bruggen R, Steele C, Mossman BT, Tschopp J (2008) Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 320:674–677CrossRefGoogle Scholar
  73. Dubuisson M, Vander Stricht D, Clippe A, Etienne F, Nauser T et al (2004) Human peroxiredoxin 5 is a peroxynitrite reductase. FEBS Lett 571:161–165CrossRefGoogle Scholar
  74. El-Agamey A, Lowe GM, McGarvey DJ, Mortensen A, Phillip DM, Truscott TG (2004) Carotenoid radical chemistry and antioxidant/pro-oxidant properties. Arch Biochem Biophys 430:37–48CrossRefGoogle Scholar
  75. El-barbary AM, Khalek MAA, Elsalawy AM, Hazaa SM (2011) Assessment of lipid peroxidation and antioxidant status in rheumatoid arthritis and osteoarthritis patients. Egypt Rheumatol 33:179–185CrossRefGoogle Scholar
  76. Evans MD, Dizdaroglu M, Cooke MS (2004) Oxidative DNA damage and disease: induction, repair and significance. Mutat Res 567:1–61CrossRefGoogle Scholar
  77. Fang FC (2011) Antimicrobial actions of reactive oxygen species. MBio 2:pii: e00141–e00111Google Scholar
  78. Fassett RG, Coombes JS (2011) Astaxanthin: a potential therapeutic agent in cardiovascular disease. Mar Drugs 9:447–465CrossRefGoogle Scholar
  79. Faulkner LE, Panagotopulos SE, Johnson JD, Woollett LA, Hui DY, Witting SR, Maiorano JN, Davidson WS (2008) An analysis of the role of a retroendocytosis pathway in ABCA1-mediated cholesterol efflux from macrophages. J Lipid Res 49:1322–1332 PubMed: 18359958CrossRefGoogle Scholar
  80. Fernandez PL, Dutra FF, Alves L, Figueiredo RT, Mourao-Sa D, Fortes GB, Bergstrand S, Lonn D, Cevallos RR, Pereira RM, Lopes UG, Travassos LH, Paiva CN, Bozza MT (2010) Heme amplifies the innate immune response to microbial molecules through spleen tyrosine kinase (Syk)-dependent reactive oxygen species generation. J Biol Chem 285:32844–32851CrossRefGoogle Scholar
  81. Filippin LI, Vercelino R, Marroni N, Xavier RM (2008) Redox signalling and the inflammatory response in rheumatoid arthritis. Clin Exp Immunol 152:415–422CrossRefGoogle Scholar
  82. Filomeni G, Rotilio G, Ciriolo MR (2002) Cell signalling and the glutathione redox system. Biochem Pharmacol 64:1057–1064CrossRefGoogle Scholar
  83. Finn AV, Nakano M, Polavarapu R, Karmali V, Saeed O, Zhao X, Yazdani S, Otsuka F, Davis T, Habib A, Narula J, Kolodgie FD, Virmani R (2012) Hemoglobin directs macrophage differentiation and prevents foam cell formation in human atherosclerotic plaques. J Am Coll Cardiol 59:166–177CrossRefGoogle Scholar
  84. Flegel WA, Baumstark MW, Weinstock C, Berg A, Northoff H (1993) Prevention of endotoxin-induced monokine release by human low- and high-density lipoproteins and by apolipoprotein A-I. Infect Immun 61:5140–5146 PubMed: 8225591CrossRefGoogle Scholar
  85. Flohe L (2010) Changing paradigms in thiology from antioxidant defense toward redox regulation. Methods Enzymol 473:1–39CrossRefGoogle Scholar
  86. Flohé L (1988) Glutathione peroxidase. Basic Life Sci 49:663–668Google Scholar
  87. Flora G, Gupta D, Tiwari A (2012) Toxicity of lead: a review with recent updates. Interdiscip Toxicol 5:47–58CrossRefGoogle Scholar
  88. Fortes GB, Alves LS, de Oliveira R, Dutra FF, Rodrigues D, Fernandez PL, Souto-Padron T, De Rosa MJ, Kelliher M, Golenbock D, Chan FK, Bozza MT (2012) Heme induces programmed necrosis on macrophages through autocrine TNF and ROS production. Blood 119:2368–2375CrossRefGoogle Scholar
  89. Foyer CH, Noctor G (2011) Ascorbate and glutathione: the heart of the redox hub. Plant Physiol 155:2–18CrossRefGoogle Scholar
  90. Francone OL, Royer L, Boucher G, Haghpassand M, Freeman A, Brees D, Aiello RJ (2005) Increased cholesterol deposition, expression of scavenger receptors, and response to chemotactic factors in Abca1-deficient macrophages. Arterioscler Thromb Vasc Biol 25:1198–1205 PubMed: 15831807CrossRefGoogle Scholar
  91. Freigang S, Ampenberger F, Spohn G, Heer S, Shamshiev AT, Kisielow J, Hersberger M, Yamamoto M, Bachmann MF, Kopf M (2011) Nrf2 is essential for cholesterol crystal-induced inflammasome activation and exacerbation of atherosclerosis. Eur J Immunol 41:2040–2051CrossRefGoogle Scholar
  92. Fu PP, Xia Q, Sun X et al (2012) Phototoxicity and environmental transformation of polycyclic aromatic hydrocarbons (PAHs)-light-induced reactive oxygen species, lipid peroxidation, and DNA damage. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 30:1–41CrossRefGoogle Scholar
  93. Gelissen IC, Harris M, Rye KA, Quinn C, Brown AJ, Kockx M, Cartland S, Packianathan M, Kritharides L, Jessup W (2006) ABCA1 and ABCG1 synergize to mediate cholesterol export to apoA-I. Arterioscler Thromb Vasc Biol 26:534–540 PubMed: 16357317CrossRefGoogle Scholar
  94. Gringhuis SI, Leow A, Papendrecht-van der Voort EA, Remans PH, Breedveld FC, Verweij CL (2000) Displacement of linker for activation of T cells from the plasma membrane due to redox balance alterations results in hyporesponsiveness of synovial fluid T lymphocytes in rheumatoid arthritis. J Immunol 164:2170–2179CrossRefGoogle Scholar
  95. Gromer S, Urig S, Becker K (2004) The thioredoxin system—from science to clinic. Med Res Rev 24:40–89CrossRefGoogle Scholar
  96. Gross O, Poeck H, Bscheider M, Dostert C, Hannesschlager N, Endres S, Hartmann G, Tardivel A, Schweighoffer E, Tybulewicz V, Mocsai A, Tschopp J, Ruland J (2009) Syk kinase signalling couples to the Nlrp3 inflammasome for anti-fungal host defence. Nature 459:433–436CrossRefGoogle Scholar
  97. Guimaraes-Costa AB, Nascimento MT, Wardini AB, Pintoda-Silva LH, Saraiva EM (2012) ETosis: a microbicidal mechanism beyond cell death. J Parasitol Res 2012:929743CrossRefGoogle Scholar
  98. Gutierrez MG, Master SS, Singh SB, Taylor GA, Colombo MI, Deretic V (2004) Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 119:753–766CrossRefGoogle Scholar
  99. Gutierrez MG, Vazquez CL, Munafo DB, Zoppino FC, Beron W, Rabinovitch M, Colombo MI (2005) Autophagy induction favours the generation and maturation of the Coxiella-replicative vacuoles. Cell Microbiol 7:981–993CrossRefGoogle Scholar
  100. Guzik TJ, West NE, Pillai R, Taggart DP, Channon KM (2002) Nitric oxide modulates superoxide release and peroxynitrite formation in human blood vessels. Hypertension 39:1088–1094CrossRefGoogle Scholar
  101. Hackenberg T, Juul T, Auzina A, Gwizdz S, Malolepszy A, Van Der Kelen K, Dam S, Bressendorff S, Lorentzen A, Roepstorff P et al (2013) Catalase and NO CATALASE ACTIVITY1 promote autophagy-dependent cell death in Arabidopsis. Plant Cell 25:4616–4626CrossRefGoogle Scholar
  102. Hagfors L, Leanderson P, Sköldstam L, Andersson J, Johansson G (2003) Antioxidant intake, plasma antioxidants and oxidative stress in a randomized, controlled, parallel, Mediterranean dietary intervention study on patients with rheumatoid arthritis. Nutr J 2:1CrossRefGoogle Scholar
  103. Hakkim A, Fuchs TA, Martinez NE, Hess S, Prinz H, Zychlinsky A, Waldmann H (2011) Activation of the Raf-MEK-ERK pathway is required for neutrophil extracellular trap formation. Nat Chem Biol 7:75–77CrossRefGoogle Scholar
  104. Halliwell B (1991) Reactive oxygen species in living systems: source, biochemistry, and role in human disease. Am J Med 91:S14–S22CrossRefGoogle Scholar
  105. Halliwell B (2006) Phagocyte-derived reactive species: salvation or suicide? Trends Biochem Sci 31:509–515CrossRefGoogle Scholar
  106. Halliwell B, Gutteridge JMC (eds) (1989) The chemistry of oxygen radicals and other oxygen-derived species. Oxford University Press, New YorkGoogle Scholar
  107. Halliwell B, Gutteridge JM (2015) Free radicals in biology and medicine. Oxford University Press, USACrossRefGoogle Scholar
  108. Han Y, Mhamdi A, Chaouch S, Noctor G (2013a) Regulation of basal and oxidative stress-triggered jasmonic acid-related gene expression by glutathione. Plant Cell Environ 36:1135–1146CrossRefGoogle Scholar
  109. Han Y, Chaouch S, Mhamdi A, Queval G, Zechmann B, Noctor G (2013b) Functional analysis of Arabidopsis mutants’ points to novel roles for glutathione in coupling H2O2 to activation of salicylic acid accumulation and signaling. Antioxid Redox Signal 18:2106–2121CrossRefGoogle Scholar
  110. Hayes JD, McLellan LI (1999) Glutathione and glutathione-dependent enzymes represent a co-ordinately regulated defence against oxidative stress. Free Radic Res. 31:273–300CrossRefGoogle Scholar
  111. Hayes JD, Pulford DJ (1995) The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit Rev Biochem Mol Biol 30:445–600CrossRefGoogle Scholar
  112. Helmy M, Shohayeb M, Helmy MH, El-Bassiouni EA (2001) Antioxidants as adjuvant therapy in rheumatoid disease. Arzneimittelforschung 51:293–298Google Scholar
  113. Hider RC, Kong XL (2011) Glutathione: a key component of the cytoplasmic labile iron pool. Biometals 24:1179–1187CrossRefGoogle Scholar
  114. Hileman EA, Achanta G, Huang P (2001) Superoxide dismutase: an emerging target for cancer therapeutics. Expert Opin Ther Targets 5:697–710CrossRefGoogle Scholar
  115. Hintze KJ, Theil EC (2005) DNA and mRNA elements with complementary responses to hemin, antioxidant inducers, and iron control ferritin-L expression. Proc Natl Acad Sci USA 102:15048–15052CrossRefGoogle Scholar
  116. Hoetzenecker W, Echtenacher B, Guenova E, Hoetzenecker K, Woelbing F, Bruck J, Teske A, Valtcheva N, Fuchs K, Kneilling M, Park JH, Kim KH, Kim KW, Hoffmann P, Krenn C, Hai T, Ghoreschi K, Biedermann T, Rocken M (2012) ROS-induced ATF3 causes susceptibility to secondary infections during sepsis-associated immunosuppression. Nat Med 18:128–134CrossRefGoogle Scholar
  117. Holmgren A (2000) Antioxidant function of thioredoxin and glutaredoxin systems. Antioxid Redox Signal 2:811–820CrossRefGoogle Scholar
  118. Houston DKN, Johnson MA (2000) Does vitamin C intake protects against lead toxicity? Nutr Rev 58:73–79CrossRefGoogle Scholar
  119. Huang J, Canadien V, Lam GY, Steinberg BE, Dinauer MC, Magalhaes MA, Glogauer M, Grinstein S, Brumell JH (2009) Activation of antibacterial autophagy by NADPH oxidases. Proc Natl Acad Sci USA 106:6226–6231CrossRefGoogle Scholar
  120. Huang J, Lam GY, Brumell JH (2011) Autophagy signaling through reactive oxygen species. Antioxid Redox Signal 14:2215–2231CrossRefGoogle Scholar
  121. Hubsch AP, Casas AT, Doran JE (1995) Protective effects of reconstituted high-density lipoprotein in rabbit gram-negative bacteremia models. J Lab Clin Med 126:548–558 PubMed: 7490514Google Scholar
  122. Iqbal A, Yabuta Y, Takeda T, Nakano Y, Shigeoka S (2006) Hydroperoxide reduction by thioredoxin-specific glutathione peroxidase isoenzymes of Arabidopsis thaliana. FEBS J 273:5589–5597CrossRefGoogle Scholar
  123. Iyama S, Okamoto T, Sato T et al (2001) Treatment of murine collagen-induced arthritis by ex vivo extracellular superoxide dismutase gene transfer. Arthritis Rheum 44:2160–2167CrossRefGoogle Scholar
  124. Jackson H, Braun CL, Ernst H (2008) The chemistry of novel xanthophyll carotenoids. Am J Cardiol 101:50–57CrossRefGoogle Scholar
  125. Jakobsson P-J, Morgenstern R, Mancini J, Ford-Hutchinson A, Persson B (1999) Common structural features of MAPEGd—a widespread superfamily of membrane associated proteins with highly divergent functions in eicosanoid and glutathione metabolism. Protein Sci 8:689–692CrossRefGoogle Scholar
  126. Jankowski A, Grinstein S (2002) Modulation of the cytosolic and phagosomal pH by the NADPH oxidase. Antioxid Redox Signal 4:61–68CrossRefGoogle Scholar
  127. Jaswal S, Mehta HC, Sood AK, Kaur J (2003) Antioxidant status in rheumatoid arthritis and role of antioxidant therapy. Clin Chim Acta 338:123–129CrossRefGoogle Scholar
  128. Johnson EE, Wessling-Resnick M (2012) Iron metabolism and the innate immune response to infection. Microbes Infect 14:207–216CrossRefGoogle Scholar
  129. Johnson EE, Sandgren A, Cherayil BJ, Murray M, Wessling-Resnick M (2010) Role of ferroportin in macrophage-mediated immunity. Infect Immun 78:5099–5106CrossRefGoogle Scholar
  130. Juul T, Malolepszy A, Dybkaer K, Kidmose R, Rasmussen JT, Andersen GR, Johnsen HE, Jørgensen JE, Andersen SU (2010) The in vivo toxicity of hydroxyurea depends on its direct target catalase. J Biol Chem 285:21411–21415CrossRefGoogle Scholar
  131. Kakhlon O, Cabantchik ZI (2002) The labile iron pool: characterization, measurement, and participation in cellular processes. Free Radic Biol Med 33:1037–1046CrossRefGoogle Scholar
  132. Kalpakcioglu B, Şenel K (2008) The interrelation of glutathione reductase, catalase, glutathione peroxidase, superoxide dismutase, and glucose-6-phosphate in the pathogenesis of rheumatoid arthritis. Clin Rheumatol 27:141–145CrossRefGoogle Scholar
  133. Kasparova S, Brezova V, Valko M, Horecky J, Mlynarik V, Liptaj T, Vancova O, Ulicna O, Dobrota D (2005) Study of the oxidative stress in a rat model of chronic brain hypoperfusion. Neurochem Int 46:601–611CrossRefGoogle Scholar
  134. Kennedy MA, Barrera GC, Nakamura K, Baldan A, Tarr P, Fishbein MC, Frank J, Francone OL, Edwards PA (2005) ABCG1 has a critical role in mediating cholesterol efflux to HDL and preventing cellular lipid accumulation. Cell Metab 1:121–131 PubMed: 16054053CrossRefGoogle Scholar
  135. Khojah HM, Ahmed S, Abdel-Rahman MS, Hamza AB (2016) Reactive oxygen and nitrogen species in patients with rheumatoid arthritis as potential biomarkers for disease activity and the role of antioxidants. Free Radic Biol Med 97:285–291CrossRefGoogle Scholar
  136. Kim C, Apel K (2013) Singlet oxygen-mediated signaling in plants: moving from flu to wild type reveals an increasing complexity. Photosynth Res 116:455–464CrossRefGoogle Scholar
  137. Kinnula VL (2005) Production and degradation of oxygen metabolites during inflammatory states in the human lung. Curr Drug Targets Inflamm Allergy 4:465–470CrossRefGoogle Scholar
  138. Kinnula VL, Crapo JD (2003) Superoxide dismutases in the lung and human lung diseases. Am J Respir Crit Care Med 167:1600–1619CrossRefGoogle Scholar
  139. Kinnula VL, Lehtonen S, Kaarteenaho-Wiik R, Lakari E, Pääkkö P et al (2002) Cell specific expression of peroxiredoxins in human lung and pulmonary sarcoidosis. Thorax 57:157–164CrossRefGoogle Scholar
  140. Kinter CS, Lundie JM, Patel H, Rindler PM, Szweda LI, Kinter M (2012) A quantitative proteomic profile of the Nrf2-mediated antioxidant response of macrophages to oxidized LDL determined by multiplexed selected reaction monitoring. PLoS One 7:e50016CrossRefGoogle Scholar
  141. Kirkman HN, Rolfo M, Ferraris AM, Gaetani GF (1999) Mechanisms of protection of catalase by NADPH. Kinetics and stoichiometry. J Biol Chem 274:13908–13914CrossRefGoogle Scholar
  142. Klebanoff SJ (2005) Myeloperoxidase: friend and foe. J Leukoc Biol 77:598–625CrossRefGoogle Scholar
  143. Kloesch B, Becker T, Dietersdorfer E, Kiener H, Steiner G (2013) Anti-inflammatory and apoptotic effects of the polyphenol curcumin on human fibroblast-like synoviocytes. Int Immunopharmacol 15:400–405CrossRefGoogle Scholar
  144. Koarai A, Sugiura H, Yanagisawa S, Ichikawa T, Minakata Y, Matsunaga K, Hirano T, Akamatsu K, Ichinose M (2010) Oxidative stress enhances toll-like receptor 3 response to double-stranded RNA in airway epithelial cells. Am J Respir Cell Mol Biol 42:651–660CrossRefGoogle Scholar
  145. Kobayashi A, Takanezawa Y, Hirata T, Shimizu Y, Misasa K, Kioka N, Arai H, Ueda K, Matsuo M (2006) Efflux of sphingomyelin, cholesterol, and phosphatidylcholine by ABCG1. J Lipid Res 47:1791–1802 PubMed: 16702602CrossRefGoogle Scholar
  146. Kojo S (2000) Vitamin C: basic metabolism and its function as an index of oxidative stress. Curr Med Chem 11:1041–1064CrossRefGoogle Scholar
  147. Koseki M, Hirano K, Masuda D, Ikegami C, Tanaka M, Ota A, Sandoval JC, Nakagawa-Toyama Y, Sato SB, Kobayashi T, Shimada Y, Ohno-Iwashita Y, Matsuura F, Shimomura I, Yamashita S (2007) Increased lipid rafts and accelerated lipopolysaccharide-induced tumor necrosis factor-alpha secretion in Abca1-deficient macrophages. J Lipid Res 48:299–306 PubMed: 17079792CrossRefGoogle Scholar
  148. Kotsias F, Hoffmann E, Amigorena S, Savina A (2013) Reactive oxygen species production in the phagosome: impact on antigen presentation in dendritic cells. Antioxid Redox Signal 18:714–729CrossRefGoogle Scholar
  149. Kozarov EV, Dorn BR, Shelburne CE, Dunn WA Jr, Progulske-Fox A (2005) Human atherosclerotic plaque contains viable invasive Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis. Arterioscler Thromb Vasc Biol 25:e17–e18CrossRefGoogle Scholar
  150. Kuhn AM, Tzieply N, Schmidt MV, von Knethen A, Namgaladze D, Yamamoto M, Brune B (2011) Antioxidant signaling via Nrf2 counteracts lipopolysaccharide-mediated inflammatory responses in foam cell macrophages. Free Radic Biol Med 50:1382–1391CrossRefGoogle Scholar
  151. Kumagai Y, Akira S (2010) Identification and functions of pattern-recognition receptors. J Allergy Clin Immunol 125:985–992CrossRefGoogle Scholar
  152. Kumar C, Igbaria A, D’Autreaux B, Planson AG, Junot C, Godat E, Bachhawat AK, Delaunay-Moisan A, Toledano MB (2011) Glutathione revisited: a vital function in iron metabolism and ancillary role in thiol-redox control. EMBO J 30:2044–2056CrossRefGoogle Scholar
  153. Kuo CC, Shor A, Campbell LA, Fukushi H, Patton DL, Grayston JT (1993) Demonstration of Chlamydia pneumoniae in atherosclerotic lesions of coronary arteries. J Infect Dis 167:841–849CrossRefGoogle Scholar
  154. Kurz T, Gustafsson B, Brunk UT (2011) Cell sensitivity to oxidative stress is influenced by ferritin autophagy. Free Radic Biol Med 50:1647–1658CrossRefGoogle Scholar
  155. Labbe K, Saleh M (2008) Cell death in the host response to infection. Cell Death Differ 15:1339–1349CrossRefGoogle Scholar
  156. Ladner JE, Parsons JF, Rife CL, Gilliland GL, Armstrong RN (2004) Parallel evolutionary pathways for glutathione transferases: structure and mechanism of the mitochondrial class kappa enzyme rGSTK1-1. Biochemistry 43:52–61CrossRefGoogle Scholar
  157. Lam GY, Huang J, Brumell JH (2010) The many roles of NOX2 NADPH oxidase-derived ROS in immunity. Semin Immunopathol 32:415–430CrossRefGoogle Scholar
  158. Lamkanfi M, Dixit VM (2010) Manipulation of host cell death pathways during microbial infections. Cell Host Microbe 8:44–54CrossRefGoogle Scholar
  159. Landis GN, Tower J (2005) Superoxide dismutase evolution and life span regulation. Mech Ageing Dev 126:365–379CrossRefGoogle Scholar
  160. Landry YD, Denis M, Nandi S, Bell S, Vaughan AM, Zha X (2006) ATP-binding cassette transporter A1 expression disrupts raft membrane microdomains through its ATPase-related functions. J Biol Chem 281:36091–36101 PubMed: 16984907CrossRefGoogle Scholar
  161. Larson JA, Howie HL, So M (2004) Neisseria meningitidis accelerates ferritin degradation in host epithelial cells to yield an essential iron source. Mol Microbiol 53:807–820CrossRefGoogle Scholar
  162. Lee EY, Lee C-K, Lee K-U et al (2007) Alpha-lipoic acid suppresses the development of collagen-induced arthritis and protects against bone destruction in mice. Rheumatol Int 27:225–233CrossRefGoogle Scholar
  163. Levine DM, Parker TS, Donnelly TM, Walsh A, Rubin AL (1993) In vivo protection against endotoxin by plasma high density lipoprotein. Proc Natl Acad Sci USA 90:12040–12044 PubMed: 8265667CrossRefGoogle Scholar
  164. Li M, Zhao L, Liu J, Liu A, Jia C, Ma D, Jiang Y, Bai X (2010) Multi-mechanisms are involved in reactive oxygen species regulation of mTORC1 signaling. Cell Signal 22:1469–1476CrossRefGoogle Scholar
  165. Lim MB, Kuiper JW, Katchky A, Goldberg H, Glogauer M (2011) Rac2 is required for the formation of neutrophil extracellular traps. J Leukoc Biol 90:771–776CrossRefGoogle Scholar
  166. Lipinski S, Till A, Sina C, Arlt A, Grasberger H, Schreiber S, Rosenstiel P (2009) DUOX2-derived reactive oxygen species are effectors of NOD2-mediated antibacterial responses. J Cell Sci 122:3522–3530CrossRefGoogle Scholar
  167. Liu GY, Essex A, Buchanan JT, Datta V, Hoffman HM, Bastian JF, Fierer J, Nizet V (2005) Staphylococcus aureus golden pigment impairs neutrophil killing and promotes virulence through its antioxidant activity. J Exp Med 202:209–215CrossRefGoogle Scholar
  168. Lu R, Arakawa R, Ito-Osumi C, Iwamoto N, Yokoyama S (2008) ApoA-I facilitates ABCA1 recycle/accumulation to cell surface by inhibiting its intracellular degradation and increases HDL generation. Arterioscler Thromb Vasc Biol 28:1820–1824 PubMed: 18617649CrossRefGoogle Scholar
  169. Lubec G (1996) The hydroxyl radical: from chemistry to human disease. J Investig Med 44:324–326Google Scholar
  170. Manevich Y, Feinstein SI, Fisher AB (2004) Activation of the antioxidant enzyme 1-CYS peroxiredoxin requires glutathionylation mediated by heterodimerization with pGST. Proc Natl Acad Sci USA 101:3780–3785CrossRefGoogle Scholar
  171. Mantegazza AR, Savina A, Vermeulen M, Perez L, Geffner J, Hermine O, Rosenzweig SD, Faure F, Amigorena S (2008) NADPH oxidase controls phagosomal pH and antigen cross-presentation in human dendritic cells. Blood 112:4712–4722CrossRefGoogle Scholar
  172. Marcil V, Delvin E, Sane AT, Tremblay A, Levy E (2006) Oxidative stress influences cholesterol efflux in THP-1 macrophages: role of ATP-binding cassette A1 and nuclear factors. Cardiovasc Res 72:473–482CrossRefGoogle Scholar
  173. Marin-Kuan M, Ehrlich V, Delatour T, Cavin C, Schilter B (2011) Evidence for a role of oxidative stress in the carcinogenicity of ochratoxin a. J Toxicol 2011:645361CrossRefGoogle Scholar
  174. Marro S, Chiabrando D, Messana E, Stolte J, Turco E, Tolosano E, Muckenthaler MU (2010) Heme controls ferroportin1 (FPN1) transcription involving Bach1, Nrf2 and a MARE/ARE sequence motif at position −7007 of the FPN1 promoter. Haematologica 95:1261–1268CrossRefGoogle Scholar
  175. Masella R, Di Benedetto R, Vari R, Filesi C, Giovannini C (2005) Novel mechanisms of natural antioxidant compounds in biological systems: involvement of glutathione and glutathione-related enzymes. J Nutr Biochem 16:577–586CrossRefGoogle Scholar
  176. Mateen S, Moin S, Khan AQ, Zafar A, Fatima N (2016) Increased reactive oxygen species formation and oxidative stress in rheumatoid arthritis. PLoS ONE 11:e0152925CrossRefGoogle Scholar
  177. Mathew BB, Tiwari A, Jatawa SK (2011) Free radicals and antioxidants: a review. J Pharm Res 4(12):4340–4343Google Scholar
  178. Medzhitov R, Schneider DS, Soares MP (2012) Disease tolerance as a defense strategy. Science 335:936–941CrossRefGoogle Scholar
  179. Menvielle-Bourg FJ (2005) Superoxide dismutase (SOD), a powerful antioxidant, is now available orally. Phytotherapie 3:1–4CrossRefGoogle Scholar
  180. Mezzetti A, Lapenna D, Romano F, Costantini F, Pierdomenico SD et al (1996) Systemic oxidative stress and its relationship with age and illness. J Am Geriatr Soc 44:823–827CrossRefGoogle Scholar
  181. Mhamdi A, Queval G, Chaouch S, Vanderauwera S, Van Breusegem F, Noctor G (2010) Catalase function in plants: a focus on Arabidopsis mutants as stress-mimic models. J Exp Bot 61:4197–4220CrossRefGoogle Scholar
  182. Miao Y, Lv D, Wang P, Wang XC, Chen J, Miao C, Song CP (2006) An Arabidopsis glutathione peroxidase functions as both a redox transducer and a scavenger in abscisic acid and drought stress responses. Plant Cell 18:2749–2766CrossRefGoogle Scholar
  183. Miller EW, Dickinson BC, Chang CJ (2010) Aquaporin-3 mediates hydrogen peroxide uptake to regulate downstream intracellular signaling. Proc Natl Acad Sci USA 107:15681–15686CrossRefGoogle Scholar
  184. Millonig G, Ganzleben I, Peccerella T, Casanovas G, Brodziak-Jarosz L, Breitkopf-Heinlein K, Dick TP, Seitz HK, Muckenthaler MU, Mueller S (2012) Sustained submicromolar H2O2 levels induce hepcidin via signal transducer and activator of transcription 3 (STAT3). J Biol Chem 287:37472–37482CrossRefGoogle Scholar
  185. Mittra B, Cortez M, Haydock A, Ramasamy G, Myler PJ, Andrews NW (2013) Iron uptake controls the generation of Leishmania infective forms through regulation of ROS levels. J Exp Med 210:401–416CrossRefGoogle Scholar
  186. Mladenka P, Simunek T, Hubl M, Hrdina R (2006) The role of reactive oxygen and nitrogen species in cellular iron metabolism. Free Radic Res 40:263–272CrossRefGoogle Scholar
  187. Moazed TC, Kuo C, Grayston JT, Campbell LA (1997) Murine models of Chlamydia pneumoniae infection and atherosclerosis. J Infect Dis 175:883–890CrossRefGoogle Scholar
  188. Moore SF, MacKenzie AB (2009) NADPH oxidase NOX2 mediates rapid cellular oxidation following ATP stimulation of endotoxin-primed macrophages. J Immunol 183:3302–3308CrossRefGoogle Scholar
  189. Mortensen A, Skibsted LH, Truscott TG (2001) The interaction of dietary carotenoids with radical species. Arch Biochem Biophys 385:13–19CrossRefGoogle Scholar
  190. Moudry R, Spycher MO, Doran JE (1997) Reconstituted high density lipoprotein modulates adherence of polymorphonuclear leukocytes to human endothelial cells. Shock 7:175–181 PubMed: 9068082CrossRefGoogle Scholar
  191. Mujawar Z, Rose H, Morrow MP, Pushkarsky T, Dubrovsky L, Mukhamedova N, Fu Y, Dart A, Orenstein JM, Bobryshev YV, Bukrinsky M, Sviridov D (2006) Human immunodeficiency virus impairs reverse cholesterol transport from macrophages. PLoS Biol 4:e365CrossRefGoogle Scholar
  192. Murphy AJ, Woollard KJ, Hoang A, Mukhamedova N, Stirzaker RA, McCormick SP, Remaley AT, Sviridov D, Chin-Dusting J (2008) High-density lipoprotein reduces the human monocyte inflammatory response. Arterioscler Thromb Vasc Biol 28:2071–2077 PubMed: 18617650CrossRefGoogle Scholar
  193. Murray JL, McDonald NJ, Sheng J, Shaw MW, Hodge TW, Rubin DH, O’Brien WA, Smee DF (2012) Inhibition of influenza a virus replication by antagonism of a PI3K-AKTmTOR pathway member identified by gene-trap insertional mutagenesis. Antivir Chem Chemother 22:205–215CrossRefGoogle Scholar
  194. Nakagawa I, Amano A, Mizushima N, Yamamoto A, Yamaguchi H, Kamimoto T, Nara A, Funao J, Nakata M, Tsuda K, Hamada S, Yoshimori T (2004) Autophagy defends cells against invading group A Streptococcus. Science 306:1037–1040CrossRefGoogle Scholar
  195. Nandi S, Ma L, Denis M, Karwatsky J, Li Z, Jiang XC, Zha X (2009) ABCA1-mediated cholesterol efflux generates microparticles in addition to HDL through processes governed by membrane rigidity. J Lipid Res 50:456–466 PubMed: 18941142CrossRefGoogle Scholar
  196. Nathan C, Ding A (2010) SnapShot: reactive oxygen intermediates (ROI). Cell 140:951–951.e2Google Scholar
  197. Neufeld EB, Remaley AT, Demosky SJ, Stonik JA, Cooney AM, Comly M, Dwyer NK, Zhang M, Blanchette-Mackie J, Santamarina-Fojo S, Brewer HB Jr (2001) Cellular localization and trafficking of the human ABCA1 transporter. J Biol Chem 276:27584–27590 PubMed: 11349133CrossRefGoogle Scholar
  198. Niethammer P, Grabher C, Look AT, Mitchison TJ (2009) A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish. Nature 459:996–999CrossRefGoogle Scholar
  199. Niizuma H, Nakamura Y, Ozaki T, Nakanishi H, Ohira M et al (2006) Bcl-2 is a key regulator for the retinoic acid-induced apoptotic cell death in neuroblastoma. Oncogene 25:5046–5055CrossRefGoogle Scholar
  200. Niles RM (2004) Signaling pathways in retinoid chemoprevention and treatment of cancer. Mutat Res 555:81–96CrossRefGoogle Scholar
  201. O’Brien E, Dietrich DR (2005) Ochratoxin A: the continuing enigma. Crit Rev Toxicol 35:33–60CrossRefGoogle Scholar
  202. O’Rourke EJ, Chevalier C, Pinto AV, Thiberge JM, Ielpi L, Labigne A, Radicella JP (2003) Pathogen DNA as target for host-generated oxidative stress: role for repair of bacterial DNA damage in Helicobacter pylori colonization. Proc Natl Acad Sci USA 100:2789–2794CrossRefGoogle Scholar
  203. Ogawa I, Okada M (2005, May) Looking to the future: a new career education programme. 29(3):261–272,  https://doi.org/10.1111/j.1470-6431.2005.00415.xCrossRefGoogle Scholar
  204. Olagnier D, Lavergne RA, Meunier E, Lefevre L, Dardenne C, Aubouy A, Benoit-Vical F, Ryffel B, Coste A, Berry A, Pipy B (2011) Nrf2, a PPARgamma alternative pathway to promote CD36 expression on inflammatory macrophages: implication for malaria. PLoS Pathog 7:e1002254CrossRefGoogle Scholar
  205. Olson JA (2004) Carotenoids: absorption, transport and metabolism in humans. Pure Appl Chem 66:1011–1016CrossRefGoogle Scholar
  206. Oram JF (2008) The ins and outs of ABCA. J Lipid Res 49:1150–1151 PubMed: 18375914CrossRefGoogle Scholar
  207. Oram JF, Lawn RM, Garvin MR, Wade DP (2000) ABCA1 is the cAMP-inducible apolipoprotein receptor that mediates cholesterol secretion from macrophages. J Biol Chem 275:34508–34511 PubMed: 10918070CrossRefGoogle Scholar
  208. Out R, Hoekstra M, Hildebrand RB, Kruit JK, Meurs I, Li Z, Kuipers F, Van Berkel TJ, Van Eck M (2006) Macrophage ABCG1 deletion disrupts lipid homeostasis in alveolar macrophages and moderately influences atherosclerotic lesion development in LDL receptor-deficient mice. Arterioscler Thromb Vasc Biol 26:2295–2300 PubMed: 16857950CrossRefGoogle Scholar
  209. Out R, Hoekstra M, Meurs I, de Vos P, Kuiper J, Van Eck M, Van Berkel TJ (2007) Total body ABCG1 expression protects against early atherosclerotic lesion development in mice. Arterioscler Thromb Vasc Biol 27:594–599 PubMed: 17204665CrossRefGoogle Scholar
  210. Out R, Hoekstra M, Habets K, Meurs I, de Waard V, Hildebrand RB, Wang Y, Chimini G, Kuiper J, Van Berkel TJ, Van Eck M (2008a) Combined deletion of macrophage ABCA1 and ABCG1 leads to massive lipid accumulation in tissue macrophages and distinct atherosclerosis at relatively low plasma cholesterol levels. Arterioscler Thromb Vasc Biol 28:258–264 PubMed: 18006857CrossRefGoogle Scholar
  211. Out R, Jessup W, Le Goff W, Hoekstra M, Gelissen IC, Zhao Y, Kritharides L, Chimini G, Kuiper J, Chapman MJ, Huby T, Van Berkel TJ, Van Eck M (2008b) Coexistence of foam cells and hypocholesterolemia in mice lacking the ABC transporters A1 and G1. Circ Res 102:113–120 PubMed: 17967783CrossRefGoogle Scholar
  212. Paiva CN, Bozza MT (2014) Are reactive oxygen species always detrimental to pathogens? Antioxid Redox Signal 20:1000–1037CrossRefGoogle Scholar
  213. Paiva CN, Feijo DF, Dutra FF, Carneiro VC, Freitas GB, Alves LS, Mesquita J, Fortes GB, Figueiredo RT, Souza HS, Fantappie MR, Lannes-Vieira J, Bozza MT (2012) Oxidative stress fuels Trypanosoma cruzi infection in mice. J Clin Invest 122:2531–2542CrossRefGoogle Scholar
  214. Pajkrt D, Doran JE, Koster F, Lerch PG, Arnet B, van der Poll T, ten Cate JW, van Deventer SJ (1996) Antiinflammatory effects of reconstituted high-density lipoprotein during human endotoxemia. J Exp Med 184:1601–1608 PubMed: 8920850CrossRefGoogle Scholar
  215. Pal S, Konkimalla VB (2016) Sulforaphane regulates phenotypic and functional switching of both induced and spontaneously differentiating human monocytes. Int Immunopharmacol 35:85–98CrossRefGoogle Scholar
  216. Paredes S, Girona J, Hurt-Camejo E et al (2002) Antioxidant vitamins and lipid peroxidation in patients with rheumatoid arthritis: association with inflammatorymarkers. J Rheumatol 29:2271–2277Google Scholar
  217. Park C, Moon D-O, Choi I-W et al (2007) Curcumin induces apoptosis and inhibits prostaglandin E (2) production in synovial fibroblasts of patients with rheumatoid arthritis. Int J Mol Med 20:365–372Google Scholar
  218. Park DW, Baek K, Kim JR, Lee JJ, Ryu SH, Chin BR, Baek SH (2009) Resveratrol inhibits foam cell formation via NADPH oxidase 1-mediated reactive oxygen species and monocyte chemotactic protein-1. Exp Mol Med 41:171–179CrossRefGoogle Scholar
  219. Parker TS, Levine DM, Chang JC, Laxer J, Coffin CC, Rubin AL (1995) Reconstituted high-density lipoprotein neutralizes gram-negative bacterial lipopolysaccharides in human whole blood. Infect Immun 63:253–258 PubMed: 7528733CrossRefGoogle Scholar
  220. Parker H, Albrett AM, Kettle AJ, Winterbourn CC (2012) Myeloperoxidase associated with neutrophil extracellular traps is active and mediates bacterial killing in the presence of hydrogen peroxide. J Leukoc Biol 91:369–376CrossRefGoogle Scholar
  221. Paul-Clark MJ, McMaster SK, Sorrentino R, Sriskandan S, Bailey LK, Moreno L, Ryffel B, Quesniaux VF, Mitchell JA (2009) Toll-like receptor 2 is essential for the sensing of oxidants during inflammation. Am J Respir Crit Care Med 179:299–306CrossRefGoogle Scholar
  222. Pelicano H, Carney D, Huang P (2004) ROS stress in cancer cells and therapeutic implications. Drug Resist Updat 7:97e110CrossRefGoogle Scholar
  223. Pfohl-Leszkowicz A, Manderville RA (2007) Ochratoxin A: an overview on toxicity and carcinogenicity in animals and humans. Mol Nutr Food Res 51:61–99CrossRefGoogle Scholar
  224. Pfohl-Leszkowicz A, Manderville RA (2012) An update on direct genotoxicity as a molecular mechanism of ochratoxin a carcinogenicity. Chem Res Toxicol 25:252–262CrossRefGoogle Scholar
  225. Portal-Nuñez S, Esbrit P, Alcaraz MJ, Largo R (2016) Oxidative stress, autophagy, epigenetic changes and regulation by miRNAs as potential therapeutic targets in osteoarthritis. Biochem Pharmacol 108:1–10CrossRefGoogle Scholar
  226. Portugal S, Carret C, Recker M, Armitage AE, Goncalves LA, Epiphanio S, Sullivan D, Roy C, Newbold CI, Drakesmith H, Mota MM (2011) Host-mediated regulation of superinfection in malaria. Nat Med 17:732–737CrossRefGoogle Scholar
  227. Pratico D (2001) In vivo measurement of the redox state. Lipids 36(Suppl):S45–S47CrossRefGoogle Scholar
  228. Py BF, Lipinski MM, Yuan J (2007) Autophagy limits Listeria monocytogenes intracellular growth in the early phase of primary infection. Autophagy 3:117–125CrossRefGoogle Scholar
  229. Quezado ZM, Natanson C, Banks SM, Alling DW, Koev CA, Danner RL, Elin RJ, Hosseini JMQ, Parker TS, Levine DM et al (1995) Therapeutic trial of reconstituted human high-density lipoprotein in a canine model of gram-negative septic shock. J Pharmacol Exp Ther 272:604–611 PubMed: 7853173Google Scholar
  230. Rader DJ (2007) Mechanisms of disease: HDL metabolism as a target for novel therapies. Nat Clin Pract Cardiovasc Med 4:102–109 PubMed: 17245404CrossRefGoogle Scholar
  231. Rahantaniaina MS, Tuzet A, Mhamdi A, Noctor G (2013) Missing links in understanding redox signaling via thiol/disulfide modulation: how is glutathione oxidized in plants? Front Plant Sci 4:477CrossRefGoogle Scholar
  232. Ramakrishna V, Jailkhani R (2007) Evaluation of oxidative stress in Insulin Dependent Diabetes Mellitus (IDDM) patients. Diagn Pathol 2:1CrossRefGoogle Scholar
  233. Ramel F, Birtic S, Ginies C, Soubigou-Taconnat L, Triantaphylidès C, Havaux M (2012) Carotenoid oxidation products are stress signals that mediate gene responses to singlet oxygen in plants. Proc Natl Acad Sci USA 109:5535–5540CrossRefGoogle Scholar
  234. Ranalletta M, Wang N, Han S, Yvan-Charvet L, Welch C, Tall AR (2006) Decreased atherosclerosis in low-density lipoprotein receptor knockout mice transplanted with Abcg1/ bone marrow. Arterioscler Thromb Vasc Biol 26:2308–2315 PubMed: 16917103CrossRefGoogle Scholar
  235. Ranga Rao A, Raghunath Reddy RL, Baskaran V, Sarada R, Ravishankar GA (2010) Characterization of microalgal carotenoids by mass spectrometry and their bioavailability and antioxidant properties elucidated in rat models. J Agric Food Chem 58:8553–8559CrossRefGoogle Scholar
  236. Reeves EP, Lu H, Jacobs HL, Messina CG, Bolsover S, Gabella G, Potma EO, Warley A, Roes J, Segal AW (2002) Killing activity of neutrophils is mediated through activation of proteases by K+ flux. Nature 416:291–297CrossRefGoogle Scholar
  237. Reeves EP, Nagl M, Godovac-Zimmermann J, Segal AW (2003) Reassessment of the microbicidal activity of reactive oxygen species and hypochlorous acid with reference to the phagocytic vacuole of the neutrophil granulocyte. J Med Microbiol 52:643–651CrossRefGoogle Scholar
  238. Rice-Evans CA, Sampson J, Bramley PM, Holloway DE (1997) Why do we expect carotenoids to be antioxidants in vivo? Free Radic Res 26:381–398CrossRefGoogle Scholar
  239. Ringot D, Chango A, Schneider YJ, Larondelle Y (2006) Toxicokinetics and toxicodynamics of ochratoxin A, an update. Chem Biol Interact 159:18–46CrossRefGoogle Scholar
  240. Robinson A, Huttley GA, Booth HS, Board PG (2004) Modelling and bioinformatics studies of the human kappa class glutathione transferase predict a novel third transferase family with homology to prokaryotic 2-hydroxychromene-2-carboxylate isomerases. Biochem J 379:541–552CrossRefGoogle Scholar
  241. Roca FJ, Ramakrishnan L (2013) TNF dually mediates resistance and susceptibility to Mycobacteria via mitochondrial reactive oxygen species. Cell 153:521–534CrossRefGoogle Scholar
  242. Rodriquez C, Mayo JC, Sainz RM, Antolin I, Herrera F, Martin V, Reiter RJ (2004) Regulation of antioxidant enzymes: a significant role for melatonin. J Pineal Res 36:1–9CrossRefGoogle Scholar
  243. Romano PS, Arboit MA, Vazquez CL, Colombo MI (2009) The autophagic pathway is a key component in the lysosomal dependent entry of Trypanosoma cruzi into the host cell. Autophagy 5:6–18CrossRefGoogle Scholar
  244. Rosen H, Crowley JR, Heinecke JW (2002) Human neutrophils use the myeloperoxidase-hydrogen peroxide-chloride system to chlorinate but not nitrate bacterial proteins during phagocytosis. J Biol Chem 277:30463–30468CrossRefGoogle Scholar
  245. Rubartelli A, Gattorno M, Netea MG, Dinarello CA (2011) Interplay between redox status and inflammasome activation. Trends Immunol 32:559–566CrossRefGoogle Scholar
  246. Ruotsalainen AK, Inkala M, Partanen ME, Lappalainen JP, Kansanen E, Makinen PI, Heinonen SE, Laitinen HM, Heikkila J, Vatanen T, Horkko S, Yamamoto M, Yla-Herttuala S, Jauhiainen M, Levonen AL (2013) The absence of macrophage Nrf2 promotes early atherogenesis. Cardiovasc Res 98:107–115CrossRefGoogle Scholar
  247. Rybicka JM, Balce DR, Khan MF, Krohn RM, Yates RM (2010) NADPH oxidase activity controls phagosomal proteolysis in macrophages through modulation of the luminal redox environment of phagosomes. Proc Natl Acad Sci USA 107:10496–10501CrossRefGoogle Scholar
  248. Sadikot RT, Zeng H, Yull FE, Li B, Cheng DS, Kernodle DS, Jansen ED, Contag CH, Segal BH, Holland SM, Blackwell TS, Christman JW (2004) P47phox deficiency impairs NFkappa B activation and host defense in Pseudomonas pneumonia. J Immunol 172:1801–1808CrossRefGoogle Scholar
  249. Saeed O, Otsuka F, Polavarapu R, Karmali V, Weiss D, Davis T, Rostad B, Pachura K, Adams L, Elliott J, Taylor WR, Narula J, Kolodgie F, Virmani R, Hong CC, Finn AV (2012) Pharmacological suppression of hepcidin increases macrophage cholesterol efflux and reduces foam cell formation and atherosclerosis. Arterioscler Thromb Vasc Biol 32:299–307CrossRefGoogle Scholar
  250. Said-Sadier N, Padilla E, Langsley G, Ojcius DM (2010) Aspergillus fumigatus stimulates the NLRP3 inflammasome through a pathway requiring ROS production and the Syk tyrosine kinase. PLoS ONE 5:e10008CrossRefGoogle Scholar
  251. Sankaranarayanan S, Oram JF, Asztalos BF, Vaughan AM, Lund-Katz S, Adorni MP, Phillips MC, Rothblat GH (2009) Effects of acceptor composition and mechanism of ABCG1-mediated cellular free cholesterol efflux. J Lipid Res 50:275–284 PubMed: 18827283CrossRefGoogle Scholar
  252. Sano O, Kobayashi A, Nagao K, Kumagai K, Kioka N, Hanada K, Ueda K, Matsuo M (2007) Sphingomyelin-dependence of cholesterol efflux mediated by ABCG1. J Lipid Res 48:2377–2384 PubMed: 17761632CrossRefGoogle Scholar
  253. Sarban S, Kocyigit A, Yazar M, Isikan UE (2005) Plasma total antioxidant capacity, lipid peroxidation, and erythrocyte antioxidant enzyme activities in patients with rheumatoid arthritis and osteoarthritis. Clin Biochem 38:981–986CrossRefGoogle Scholar
  254. Schaaf GJ, Nijmeijer SM, Maas RF, Roestenberg P, de Groene EM, Fink-Gremmels J (2002) The role of oxidative stress in the ochratoxin A-mediated toxicity in proximal tubular cells. Biochim Biophys Acta 1588:149–158CrossRefGoogle Scholar
  255. Schafer FQ, Buettner GR (2001) Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med 30:1191–1212CrossRefGoogle Scholar
  256. Schnaith A, Kashkar H, Leggio SA, Addicks K, Kronke M, Krut O (2007) Staphylococcus aureus subvert autophagy for induction of caspase-independent host cell death. J Biol Chem 282:2695–2706CrossRefGoogle Scholar
  257. Segal AW (2005) How neutrophils kill microbes. Annu Rev Immunol 23:197–223CrossRefGoogle Scholar
  258. Shan Y, Lambrecht RW, Donohue SE, Bonkovsky HL (2006) Role of Bach1 and Nrf2 in up-regulation of the heme oxygenase-1 gene by cobalt protoporphyrin. FASEB J 20:2651–2653CrossRefGoogle Scholar
  259. Sharoni Y, Danilenko M, Dubi N, Ben-Dor A, Levy J (2004) Carotenoids and transcription. Arch Biochem Biophys 430:89–96CrossRefGoogle Scholar
  260. Sheehan D, Meade G, Foley VM, Dowd CA (2001) Structure, function and evolution of glutathione transferases: implications for classification of nonmammalian members of an ancient enzyme superfamily. Biochem J 360:1–16CrossRefGoogle Scholar
  261. Shin DM, Jeon BY, Lee HM, Jin HS, Yuk JM, Song CH, Lee SH, Lee ZW, Cho SN, Kim JM, Friedman RL, Jo EK (2010) Mycobacterium tuberculosis eis regulates autophagy, inflammation, and cell death through redox-dependent signaling. PLoS Pathog 6:e1001230CrossRefGoogle Scholar
  262. Sies H (1991) Role of reactive oxygen species in biological processes. Klin Wochenschr 69:965–968CrossRefGoogle Scholar
  263. Sies H (1999) Glutathione and its role in cellular functions. Free Radic Biol Med 27:916–921CrossRefGoogle Scholar
  264. Slauch JM (2011) How does the oxidative burst of macrophages kill bacteria? Still an open question. Mol Microbiol 80:580–583CrossRefGoogle Scholar
  265. Small DM (2003) Role of ABC transporters in secretion of cholesterol from liver into bile. Proc Natl Acad Sci USA 100:4–6 PubMed: 12509503CrossRefGoogle Scholar
  266. Sorrenti V, Di Giacomo C, Acquaviva R, Barbagallo I, Bognanno M, Galvano F (2013) Toxicity of ochratoxin a and its modulation by antioxidants: a review. Toxins 5:1742–1766CrossRefGoogle Scholar
  267. Spooner R, Yilmaz O (2011) The role of reactive-oxygen-species in microbial persistence and inflammation. Int J Mol Sci 12:334–352CrossRefGoogle Scholar
  268. Stamler JS, Singel DJ, Loscalzo J (1992) Biochemistry of nitric oxide and its redox-activated forms. Science 258:1898–1902CrossRefGoogle Scholar
  269. Starr T, Child R, Wehrly TD, Hansen B, Hwang S, Lopez-Otin C, Virgin HW, Celli J (2012) Selective subversion of autophagy complexes facilitates completion of the Brucella intracellular cycle. Cell Host Microbe 11:33–45CrossRefGoogle Scholar
  270. Staudinger BJ, Oberdoerster MA, Lewis PJ, Rosen H (2002) mRNA expression profiles for Escherichia coli ingested by normal and phagocyte oxidase-deficient human neutrophils. J Clin Invest 110:1151–1163CrossRefGoogle Scholar
  271. Stefanska J, Pawliczak R (2008) Apocynin: molecular aptitudes. Mediat Inflamm 2008:106507CrossRefGoogle Scholar
  272. Sun Y, Ishibashi M, Seimon T, Lee M, Sharma SM, Fitzgerald KA, Samokhin AO, Wang Y, Sayers S, Aikawa M, Jerome WG, Ostrowski MC, Bromme D, Libby P, Tabas IA, Welch CL, Tall AR (2009) Free cholesterol accumulation in macrophage membranes activates Toll-like receptors and p38 mitogen-activated protein kinase and induces cathepsin K. Circ Res 104:455–465 PubMed: 19122179CrossRefGoogle Scholar
  273. Suzuki T, Yamamoto M (2017) Stress-sensing mechanisms and the physiological roles of the Keap1-Nrf2 system during cellular stress. J Biol Chem 292:16817–16824CrossRefGoogle Scholar
  274. Swirski FK, Nahrendorf M (2013) Leukocyte behavior in atherosclerosis, myocardial infarction, and heart failure. Science 339:161–166CrossRefGoogle Scholar
  275. Tabas I (2005) Consequences and therapeutic implications of macrophage apoptosis in atherosclerosis: the importance of lesion stage and phagocytic efficiency. Arterioscler Thromb Vasc Biol 25:2255–2264 PubMed: 16141399CrossRefGoogle Scholar
  276. Takahashi Y, Smith JD (1999) Cholesterol efflux to apolipoprotein AI involves endocytosis and resecretion in a calcium-dependent pathway. Proc Natl Acad Sci USA 96:11358–11363 PubMed: 10500181CrossRefGoogle Scholar
  277. Takeda K, Akira S (2005) Toll-like receptors in innate immunity. Int Immunol 17:1–14 PubMed: 15585605CrossRefGoogle Scholar
  278. Tal MC, Sasai M, Lee HK, Yordy B, Shadel GS, Iwasaki A (2009) Absence of autophagy results in reactive oxygen species-dependent amplification of RLR signaling. Proc Natl Acad Sci USA 106:2770–2775CrossRefGoogle Scholar
  279. Tall AR (2008) Cholesterol efflux pathways and other potential mechanisms involved in the athero protective effect of high-density lipoproteins. J Intern Med 263:256–273 PubMed: 18271871CrossRefGoogle Scholar
  280. Tall AR, Yvan-Charvet L, Terasaka N, Pagler T, Wang N (2008) HDL, ABC transporters, and cholesterol efflux: implications for the treatment of atherosclerosis. Cell Metab 7:365–375 PubMed: 18460328CrossRefGoogle Scholar
  281. Tavakoli S, Asmis R (2012) Reactive oxygen species and thiol redox signaling in the macrophage biology of atherosclerosis. Antioxid Redox Signal 17:1785–1795CrossRefGoogle Scholar
  282. Taysi S, Polat F, Gul M, Sari R, Bakan E (2002) Lipid peroxidation, some extracellular antioxidants, and antioxidant enzymes in serum of patients with rheumatoid arthritis. Rheumatol Int 21:200–204CrossRefGoogle Scholar
  283. Tebay LE, Robertson H, Durant ST, Vitale SR, Penning TM, Dinkova-Kostova AT, Hayes JD (2015) Mechanisms of activation of the transcription factor Nrf2 by redox stressors, nutrient cues, and energy status and the pathways through which it attenuates degenerative disease. Free Radic Biol Med 88(Part B):108–146CrossRefGoogle Scholar
  284. Terasaka N, Wang N, Yvan-Charvet L, Tall AR (2007) High-density lipoprotein protects macrophages from oxidized low-density lipoprotein-induced apoptosis by promoting efflux of 7-ketocholesterol via ABCG1. Proc Natl Acad Sci USA 104:15093–15098 PubMed: 17846428CrossRefGoogle Scholar
  285. Thannickal VJ, Fanburg BL (2000) Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol 279:L1005–L1028CrossRefGoogle Scholar
  286. Tilton C, Clippinger AJ, Maguire T, Alwine JC (2011) Human cytomegalovirus induces multiple means to combat reactive oxygen species. J Virol 85:12585–12593CrossRefGoogle Scholar
  287. Toyokuni S, Okamoto K, Yodoi J et al (1995) Persistent oxidative stress in cancer. FEBS Lett 358:1–3CrossRefGoogle Scholar
  288. Tripathi BN, Bhatt I, Dietz KJ (2009) Peroxiredoxins: a less studied component of hydrogen peroxide detoxification in photosynthetic organisms. Protoplasma 235:3–15CrossRefGoogle Scholar
  289. van Eck M, Bos IS, Kaminski WE, Orso E, Rothe G, Twisk J, Bottcher A, Van Amersfoort ES, Christiansen-Weber TA, Fung-Leung WP, Van Berkel TJ, Schmitz G (2002) Leukocyte ABCA1 controls susceptibility to atherosclerosis and macrophage recruitment into tissues. Proc Natl Acad Sci USA 99:6298–6303 PubMed: 11972062CrossRefGoogle Scholar
  290. Vandenabeele P, Galluzzi L, Vanden Berghe T, Kroemer G (2010) Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat Rev Mol Cell Biol 11:700–714CrossRefGoogle Scholar
  291. Vardhan H, Bhengraj AR, Jha R, Srivastava P, Jha HC, Mittal A (2010) Higher expression of ferritin protects Chlamydia trachomatis infected HeLa 229 cells from reactive oxygen species mediated cell death. Biochem Cell Biol 88:835–842CrossRefGoogle Scholar
  292. Vaughan AM, Oram JF (2003) ABCA1 redistributes membrane cholesterol independent of apolipoprotein interactions. J Lipid Res 44:1373–1380 PubMed: 12700343CrossRefGoogle Scholar
  293. Vaughan AM, Oram JF (2006) ABCA1 and ABCG1 or ABCG4 act sequentially to remove cellular cholesterol and generate cholesterol-rich HDL. J Lipid Res 47:2433–2443 PubMed: 16902247CrossRefGoogle Scholar
  294. Vedhachalam C, Duong PT, Nickel M, Nguyen D, Dhanasekaran P, Saito H, Rothblat GH, Lund-Katz S, Phillips MC (2007) Mechanism of ATP-binding cassette transporter A1-mediated cellular lipid efflux to apolipoprotein A-I and formation of high-density lipoprotein particles. J Biol Chem 282:25123–25130 PubMed: 17604270CrossRefGoogle Scholar
  295. Veselinovic M, Barudzic N, Vuletic M et al (2014) Oxidative stress in rheumatoid arthritis patients: relationship to diseases activity. Mol Cell Biochem 391:225–232CrossRefGoogle Scholar
  296. Vijayakumar D, Suresh K, Manoharan S (2006) Lipid peroxidation and antioxidant status in blood of rheumatoid arthritis patients. Indian J Clin Biochem 21:105CrossRefGoogle Scholar
  297. Wakabayashi N, Slocum SL, Skoko JJ, Shin S, Kensler TW (2010) When NRF2 talks, who’s listening? Antioxid Redox Signal 13:1649–1663CrossRefGoogle Scholar
  298. Wang N, Silver DL, Costet P, Tall AR (2000) Specific binding of ApoA-I, enhanced cholesterol efflux, and altered plasma membrane morphology in cells expressing ABC1. J Biol Chem 275:33053–33058 PubMed: 10918065CrossRefGoogle Scholar
  299. Wang N, Chen W, Linsel-Nitschke P, Martinez LO, Agerholm-Larsen B, Silver DL, Tall AR (2003) A PEST sequence in ABCA1 regulates degradation by calpain protease and stabilization of ABCA1 by apoAI. J Clin Invest 111:99–107 PubMed: 12511593CrossRefGoogle Scholar
  300. Wang N, Lan D, Chen W, Matsuura F, Tall AR (2004) ATP-binding cassette transporters G1 and G4 mediate cellular cholesterol efflux to high-density lipoproteins. Proc Natl Acad Sci USA 101:9774–9779 PubMed: 15210959CrossRefGoogle Scholar
  301. Wang X, Collins HL, Ranalletta M, Fuki IV, Billheimer JT, Rothblat GH, Tall AR, Rader DJ (2007) Macrophage ABCA1 and ABCG1, but not SR-BI, promote macrophage reverse cholesterol transport in vivo. J Clin Invest 117:2216–2224 PubMed: 17657311CrossRefGoogle Scholar
  302. Wang N, Yvan-Charvet L, Lutjohann D, Mulder M, Vanmierlo T, Kim TW, Tall AR (2008) ATP-binding cassette transporters G1 and G4 mediate cholesterol and desmosterol efflux to HDL and regulate sterol accumulation in the brain. FASEB J 22:1073–1082 PubMed: 18039927CrossRefGoogle Scholar
  303. Wang Y, Weiss LM, Orlofsky A (2009) Host cell autophagy is induced by Toxoplasma gondii and contributes to parasite growth. J Biol Chem 284:1694–1701CrossRefGoogle Scholar
  304. Weichhart T, Saemann MD (2009) The multiple facets of mTOR in immunity. Trends Immunol 30:218–226CrossRefGoogle Scholar
  305. West AP, Brodsky IE, Rahner C, Woo DK, Erdjument-Bromage H, Tempst P, Walsh MC, Choi Y, Shadel GS, Ghosh S (2011) TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature 472:476–480CrossRefGoogle Scholar
  306. White E, Shannon JS, Patterson RE (1997) Relationship between vitamin and calcium supplement use and colon cancer. Cancer Epidemiol Biomarkers Prev 6:769–774Google Scholar
  307. Wilhelm AJ, Zabalawi M, Grayson JM, Weant AE, Major AS, Owen J, Bharadwaj M, Walzem R, Chan L, Oka K, Thomas MJ, Sorci-Thomas MG (2009) Apolipoprotein A-I and its role in lymphocyte cholesterol homeostasis and autoimmunity. Arterioscler Thromb Vasc Biol 29:843–849 PubMed: 19286630CrossRefGoogle Scholar
  308. Winterbourn CC, Kettle AJ (2013) Redox reactions and microbial killing in the neutrophil phagosome. Antioxid Redox Signal 18:642–660CrossRefGoogle Scholar
  309. Wojcik AJ, Skaflen MD, Srinivasan S, Hedrick CC (2008) A critical role for ABCG1 in macrophage inflammation and lung homeostasis. J Immunol 180:4273–4282 PubMed: 18322240CrossRefGoogle Scholar
  310. Wu W, Hsu Y-MS, Bi L, Songyang Z, Lin X (2009) CARD9 facilitates microbe-elicited production of reactive oxygen species by regulating the LyGDI-Rac1 complex. Nat Immunol 10:1208–1214CrossRefGoogle Scholar
  311. Xia Q, Yin JJ, Cherng SH et al (2006a) UVA photoirradiation of retinyl palmitate—formation of singlet oxygen and superoxide, and their role in induction of lipid peroxidation. Toxicol Lett 163:30–43CrossRefGoogle Scholar
  312. Xia T, Kovochich M, Brant J et al (2006b) Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett 6:1794–1807CrossRefGoogle Scholar
  313. Xia Q, Yin JJ, Fu PP et al (2007) Photo-irradiation of Aloe vera by UVA e formation of free radicals, singlet oxygen, superoxide, and induction of lipid peroxidation. Toxicol Lett 168:165–175CrossRefGoogle Scholar
  314. Xia Q, Boudreau MD, Zhou Y-T et al (2011) UVB photoirradiation of Aloe vera formation of free radicals, singlet oxygen, superoxide, and induction of lipid peroxidation. J Food Drug Anal 19:396–402Google Scholar
  315. Xia Q, Chiang H-M, Zhou Y-T et al (2012) Phototoxicity of kava e formation of reactive oxygen species leading to lipid peroxidation and DNA damage. Am J Chin Med 40:1271–1288CrossRefGoogle Scholar
  316. Xu M, Kashanchi F, Foster A, Rotimi J, Turner W, Gordeuk VR, Nekhai S (2010) Hepcidin induces HIV-1 transcription inhibited by ferroportin. Retrovirology 7:104CrossRefGoogle Scholar
  317. Xuzhu G, Komai-Koma M, Leung BP et al (2012) Resveratrol modulates murine collagen-induced arthritis by inhibiting Th17 and B-cell function. Ann Rheum Dis 71:129–135CrossRefGoogle Scholar
  318. Yanagisawa S, Koarai A, Sugiura H, Ichikawa T, Kanda M, Tanaka R, Akamatsu K, Hirano T, Matsunaga K, Minakata Y, Ichinose M (2009) Oxidative stress augments toll-like receptor 8 mediated neutrophilic responses in healthy subjects. Respir Res 10:50CrossRefGoogle Scholar
  319. Yang CS, Shin DM, Kim KH, Lee ZW, Lee CH, Park SG, Bae YS, Jo EK (2009) NADPH oxidase 2 interaction with TLR2 is required for efficient innate immune responses to mycobacteria via cathelicidin expression. J Immunol 182:3696–3705CrossRefGoogle Scholar
  320. Yang HC, Cheng ML, Ho HY, Chiu DT (2011) The microbicidal and cytoregulatory roles of NADPH oxidases. Microb Infect 13:109–120CrossRefGoogle Scholar
  321. Yasir M, Pachikara ND, Bao X, Pan Z, Fan H (2011) Regulation of chlamydial infection by host autophagy and vacuolar ATPase-bearing organelles. Infect Immun 79:4019–4028CrossRefGoogle Scholar
  322. Yin JJ, Xia Q, Fu PP (2007) UVA photoirradiation of anhydroretinol—formation of singlet oxygen and superoxide. Toxicol Ind Health 23:625–631CrossRefGoogle Scholar
  323. Yin JJ, Lao F, Meng J et al (2008) Inhibition of tumor growth by endohedral metallofullerenol nanoparticles optimized as reactive oxygen species scavenger. Mol Pharmacol 74:1132–1140CrossRefGoogle Scholar
  324. Yoo SK, Starnes TW, Deng Q, Huttenlocher A (2011) Lyn is a redox sensor that mediates leukocyte wound attraction in vivo. Nature 480:109–112CrossRefGoogle Scholar
  325. Yoon JH, An SH, Kyeong IG, Lee MS, Kwon SC, Kang JH (2011) Oxidative modification of ferritin induced by hydrogen peroxide. BMB Rep 44:165–169CrossRefGoogle Scholar
  326. Yousefi S, Mihalache C, Kozlowski E, Schmid I, Simon HU (2009) Viable neutrophils release mitochondrial DNA to form neutrophil extracellular traps. Cell Death Differ 16:1438–1444CrossRefGoogle Scholar
  327. Yu H, Xia Q, Yan J et al (2006) Photoirradiation of polycyclic aromatic hydrocarbons with UVA light e a pathway leading to the generation of reactive oxygen species, lipid peroxidation, and DNA damage. Int J Environ Res Public Health 3:348–354CrossRefGoogle Scholar
  328. Yvan-Charvet L, Ranalletta M, Wang N, Han S, Terasaka N, Li R, Welch C, Tall AR (2007a) Combined deficiency of ABCA1 and ABCG1 promotes foam cell accumulation and accelerates atherosclerosis in mice. J Clin Invest 117:3900–3908Google Scholar
  329. Yvan-Charvet L, Matsuura F, Wang N, Bamberger MJ, Nguyen T, Rinninger F, Jiang XC, Shear CL, Tall AR (2007b) Inhibition of cholesteryl ester transfer protein by torcetrapib modestly increases macrophage cholesterol efflux to HDL. Arterioscler Thromb Vasc Biol 27:1132–1138 PubMed: 17322101CrossRefGoogle Scholar
  330. Yvan-Charvet L, Welch C, Pagler TA, Ranalletta M, Lamkanfi M, Han S, Ishibashi M, Li R, Wang N, Tall AR (2008) Increased inflammatory gene expression in ABC transporter-deficient macrophages: free cholesterol accumulation, increased signaling via toll-like receptors, and neutrophil infiltration of atherosclerotic lesions. Circulation 118:1837–1847 PubMed: 18852364CrossRefGoogle Scholar
  331. Zelko IN, Mariani TJ, Folz RJ (2002) Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radic Biol Med 33:337–349CrossRefGoogle Scholar
  332. Zhao Y, Xia Q, Yin JJ et al (2011) Photoirradiation of dehydropyrrolizidine alkaloids—formation of reactive oxygen species and induction of lipid peroxidation. Toxicol Lett 205:302–309CrossRefGoogle Scholar
  333. Zhao JF, Ching LC, Huang YC, Chen CY, Chiang AN, Kou YR, Shyue SK, Lee TS (2012) Molecular mechanism of curcumin on the suppression of cholesterol accumulation in macrophage foam cells and atherosclerosis. Mol Nutr Food Res 56:691–701CrossRefGoogle Scholar
  334. Zhu X, Lee JY, Timmins JM, Brown JM, Boudyguina E, Mulya A, Gebre AK, Willingham MC, Hiltbold EM, Mishra N, Maeda N, Parks JS (2008) Increased cellular free cholesterol in macrophage-specific Abca1 knock-out mice enhances pro-inflammatory response of macrophages. J Biol Chem 283:22930–22941 PubMed: 18552351CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Physical Chemistry and Nanoscience, Department of Chemistry, Faculty of ScienceAl Baha UniversityBaljurashiSaudi Arabia

Personalised recommendations