Reinforced Galvanic Isolation: Integrated Approaches to Go Beyond 20-kV Surge Voltage (invited)

  • Egidio RagoneseEmail author
  • Nunzio Spina
  • Alessandro Parisi
  • Giuseppe Palmisano
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 627)


This paper provides a survey about alternative approaches to implement silicon–integrated galvanic isolators with very high isolation rating (i.e., compliant with the reinforced isolation requirements). Traditional integrated galvanic isolators are based on chip–scale isolation capacitors or transformers, whose performance is limited by the adopted isolation technology (i.e., the dielectric material and its thickness). In this paper, two approaches for data and power transfer are discussed, which exploit the RF coupling between two isolated interfaces, while packaging/assembling techniques are used to guarantee high galvanic isolation.


  1. 1.
    DIN VDE Semiconductor Devices-Magnetic and Capacitive Coupler for Basic and Reinforced Isolation, VDE Verlag VDE V 0884–11, Jan 2017Google Scholar
  2. 2.
    Palumbo V, Ghidini G, Carollo E, Toia F (2015) Integrated transformer. US Patent App 14733009, filed June 8 2015Google Scholar
  3. 3.
    Mahalingam P, Guiling D, Lee S (2007) Manufacturing challenges and method of fabrication of on-chip capacitive digital isolators. In: Proceedings of international symposium on semiconductor manufacturing, Oct 2007, pp 1–4Google Scholar
  4. 4.
    Krone A et al. (2001) A CMOS direct access arrangement using digital capacitive isolation. In: Proceedings IEEE international solid-state circuits conference digital technology papers, Feb 2001, pp 300–301Google Scholar
  5. 5.
    Moghe Y, Terry A, Luzon D (2012) Monolithic 2.5 kV RMS, 1.8 V–3.3 V dual-channel 640 Mbps digital isolator in 0.5 μm SOS. In: Proceedings of IEEE international SOI conference, Oct 2012, pp 1–2Google Scholar
  6. 6.
    Kaeriyama S et al (2012) A 2.5 kV isolation 35 kV/us CMR 250 Mbps digital isolator in standard CMOS with a small transformer driving technique. IEEE J Solid-State Circ 47:435–443ADSCrossRefGoogle Scholar
  7. 7.
    Spina N, Fiore V, Lombardo P, Ragonese E, Palmisano G (2015) Current-reuse transformer coupled oscillators with output power combining for galvanically isolated power transfer systems. IEEE Trans Circ Syst I: Reg Papers 62:2940–2948MathSciNetGoogle Scholar
  8. 8.
    Lombardo P, Fiore V, Ragonese, E, Palmisano G (2016) A fully-integrated half-duplex data/power transfer system with up to 40 Mbps data rate, 23 mW output power and on-chip 5 kV galvanic isolation. In: IEEE international solid-state circuits conference digital technology papers, Feb 2016, pp 300–301Google Scholar
  9. 9.
    Greco N, Spina N, Fiore V, Ragonese E, Palmisano G (2017) A galvanically isolated dc–dc converter based on current-reuse hybrid coupled oscillators. IEEE Trans Circuits Syst II: Exp Brief 64:56–60CrossRefGoogle Scholar
  10. 10.
    Fiore V, Ragonese E, Palmisano G (2017) A fully-integrated watt-level power transfer system with on-chip galvanic isolation in silicon technology. IEEE Trans Power Electron 32:1984–1995ADSCrossRefGoogle Scholar
  11. 11.
    Ragonese E et al (2018) A fully integrated galvanically isolated DC-DC converter with data communication. IEEE Trans Circ Syst I: Reg Pap 65:1432–1441Google Scholar
  12. 12.
    Javid M, Ptacek K, Burton R, Kitchen J (2018) CMOS bi-directional ultra-wideband galvanically isolated die-to-die communication utilizing a double-isolated transformer. In: Proceedings of IEEE international symposium on power semiconductor devices and ICs, May 2018, pp 88–91Google Scholar
  13. 13.
    Texas Instruments. ISO7841x High-Performance, 8000-VPK Reinforced Quad-Channel Digital Isolator. Accessed: 2018. (Online). Available:
  14. 14.
    Greco N, Parisi A, Lombardo P, Spina N, Ragonese E, Palmisano G (2018) A double–isolated DC-DC converter based on integrated LC resonant barriers. IEEE Trans Circ Syst I: Reg Pap 65:4423–4433Google Scholar
  15. 15.
    Yun R, Sun J, Gaalaas E, Chen B (2016) A transformer-based digital isolator with 20 kVPK surge capability and >200 kV/µS common mode transient immunity. In: Proceedings of IEEE symposium on VLSI circuits, June 2016, pp 1–2Google Scholar
  16. 16.
    Qin W et al (2019) An 800 mW fully integrated galvanic isolated power transfer system meeting CISPR 22 Class-B emission levels with 6 dB margin. In: IEEE international solid-state circuits conference digital technology papers, Feb 2019, pp 246–248Google Scholar
  17. 17.
    Spina N, Girlando G, Smerzi SA, Palmisano G (2013) Integrated galvanic isolator using wireless transmission. US Patent 8364195 B2, Jan 2013Google Scholar
  18. 18.
    Renna CMA, Scuderi A, Magro C, Spina N, Ragonese E, Marano B, Palmisano G (2015) Microstructure device comprising a face to face electromagnetic near field coupling between stacked device portions and method of forming the device. US Patent 9018730 B2, granted 28 Apr 2015Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Egidio Ragonese
    • 1
    Email author
  • Nunzio Spina
    • 2
  • Alessandro Parisi
    • 2
  • Giuseppe Palmisano
    • 1
  1. 1.DIEEIUniversità di CataniaCataniaItaly
  2. 2.STMicroelectronicsCataniaItaly

Personalised recommendations