Advertisement

A Rad-Hard Bandgap Voltage Reference for High Energy Physics Experiments

  • G. TraversiEmail author
  • L. Gaioni
  • M. Manghisoni
  • M. Pezzoli
  • L. Ratti
  • V. Re
  • E. Riceputi
  • M. Sonzogni
Conference paper
  • 11 Downloads
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 627)

Abstract

This work is concerned with the characterization of a bandgap reference circuit, fabricated in a commercial 65 nm CMOS technology, designed for applications to HL-LHC experiments. Measurement results show a temperature coefficient of about 16 ppm/\(^\circ \)C over a temperature range of 140 \(^\circ \)C (from \(-40\) to 100 \(^\circ \)C) and a variation of 1.6% for V\(_{DD}\) from 1.08 to 1.32 V. The mean value of the bandgap output is about 400 mV, with a 5% maximum shift when exposed to a Total Ionizing Dose (TID) around 1 Grad (SiO\(_2\)). The power consumption is 165 \(\upmu \)W at room temperature, with a core area of 0.02835 mm\(^2\).

Keywords

Bandgap voltage reference Deep submicron CMOS Radiation effects Total ionizing dose (TID) 

Notes

Acknowledgements

The authors wish to thank Serena Mattiazzo and Devis Pantano (University of Padova) for providing the source for X-ray irradiation and for their constant support during the irradiation campaign, and Dr. Francesco De Canio for his contribution to the design and characterization activity. The authors are also in debt with Massimo Rossella (INFN Pavia) who have kindly made the climatic chamber available for the bandgap characterization.

References

  1. 1.
    Banba H et al (1999) A CMOS bandgap reference circuit with sub-1-V operation. IEEE J Solid State Circ 34:670ADSCrossRefGoogle Scholar
  2. 2.
    Neuteboom N, Kup BMJ, Janssens J (1997) A DSP-based hearing instrument IC. IEEE J Solid State Circ 32:1790–1806ADSCrossRefGoogle Scholar
  3. 3.
    Menouni M et al (2015) 1-Grad total dose evaluation of 65 nm CMOS technology for the HL-LHC upgrades. J Instrum 10(5), art. No. C05009Google Scholar
  4. 4.
    Traversi G et al (2016) Characterization of bandgap reference circuits designed for high energy physics applications. Nucl Instrum Methods A 824:371–373ADSCrossRefGoogle Scholar
  5. 5.
    Li W, Yao R, Guo L (2009) A low power CMOS bandgap voltage reference with enhanced power supply rejection. In: Proceedings of the 8th IEEE international conference on ASIC, pp 300–304Google Scholar
  6. 6.
    Vergine T, De Matteis M, Michelis S, Traversi G, De Canio F, Baschirotto A (2016) A 65 nm rad-hard bandgap voltage reference for LHC environment. IEEE Trans Nucl Sci 63(3):1762–1767ADSCrossRefGoogle Scholar
  7. 7.
    Garcia-Sciveres M, Christainsen J (2013) RD collaboration proposal: development of pixel readout integrated circuits for extreme rate and radiation. CERN-LHCC-2013-008, LHCC-P-006Google Scholar
  8. 8.
    Gromov V, Annema AJ, Kluit R, Visschers JL, Timmer P (2007) A radiation hard bandgap reference circuit in a standard 0.13 \(\upmu \)m CMOS technology. IEEE Trans Nucl Sci 54(6):2727–2733ADSCrossRefGoogle Scholar
  9. 9.
    Cao Y, De Cock W, Steyaert M, Leroux P (2013) A 4.5 MGy TID-tolerant CMOS bandgap reference circuit using a dynamic base leakage compensation technique. IEEE Trans Nucl Sci 60(4):2819–2824ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • G. Traversi
    • 1
    • 3
    Email author
  • L. Gaioni
    • 1
    • 3
  • M. Manghisoni
    • 1
    • 3
  • M. Pezzoli
    • 2
    • 3
  • L. Ratti
    • 2
    • 3
  • V. Re
    • 1
    • 3
  • E. Riceputi
    • 1
    • 3
  • M. Sonzogni
    • 1
    • 3
  1. 1.Dipartimento di Ingegneria e Scienze ApplicateUniversità degli Studi di BergamoDalmineItaly
  2. 2.Dipartimento di Ingegneria Industriale e dell’InformazioneUniversità degli Studi di PaviaPaviaItaly
  3. 3.Istituto Nazionale di Fisica NucleareSezione di PaviaPaviaItaly

Personalised recommendations