Advertisement

Hepatic Stellate Cells in Liver Tumor

  • Hidenori ShirahaEmail author
  • Masaya Iwamuro
  • Hiroyuki Okada
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1234)

Abstract

Hepatocellular carcinoma and intrahepatic cholangiocarcinoma are the most common types of primary liver cancers. Moreover, the liver is the second most frequently involved organ in cancer metastasis after lymph nodes. The tumor microenvironment is crucial for the development of both primary and secondary liver cancers. The hepatic microenvironment consists of multiple cell types, including liver sinusoidal endothelial cells, Kupffer cells, natural killer cells, liver-associated lymphocytes, and hepatic stellate cells (HSCs). The microenvironment of a normal liver changes to a tumor microenvironment when tumor cells exist or tumor cells migrate to and multiply in the liver. Interactions between tumor cells and non-transformed cells generate a tumor microenvironment that contributes significantly to tumor progression. HSCs play a central role in the tumor microenvironment crosstalk. As this crosstalk is crucial for liver carcinogenesis and liver-tumor development, elucidating the mechanism underlying the interaction of HSCs with the tumor microenvironment could provide potential therapeutic targets for liver cancer.

Keywords

Extracellular matrix Matrix metalloproteinase Myofibroblast Cancer-associated fibroblast Tumor-infiltrating leukocyte Platelet-derived growth factor Transforming growth factor-β Epithelial-mesenchymal transition Vascular endothelial growth factor Tumor-associated macrophages Stromal cell-derived factor-1 Tumor stroma Jagged-1 Angiogenesis Fibroblast activation protein 

Abbreviations

CAFs

Cancer-associated fibroblasts

CCL2

Chemokine (C-C motif) ligand 2

ECM

Extracellular matrix

EMT

Epithelial-mesenchymal transition

FAP

Fibroblast activation protein

FGF

Fibroblast growth factor

GI tract

Gastrointestinal tract

HCC

Hepatocellular carcinoma

HGF

Hepatocyte growth factor

HSCs

Hepatic stellate cells

ICC

Intrahepatic cholangiocarcinoma

IGF-I

Insulin-like growth factor I

IL

Interleukin

LSECs

Liver sinusoidal endothelial cells

MCP1

Monocyte chemoattractant protein 1

MDSCs

Myeloid-derived suppressor cells

MFB

Myofibroblast

MMPs

Matrix metalloproteinases

NK cell

Natural killer cell

OPN

Osteopontin

PDGF

Platelet-derived growth factor

SDF-1

Stromal cell-derived factor-1

TAMs

Tumor-associated macrophages

TGF-β

Transforming growth factor-β

TILs

Tumor-infiltrating leukocytes

TIMPs

Tissue inhibitors of matrix metalloproteinases

Tregs

Regulatory T cells

VEGF

Vascular endothelial growth factor

α-SMA

α-smooth muscle actin

References

  1. 1.
    Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Bertuccio P, Turati F, Carioli G et al (2017) Global trends and predictions in hepatocellular carcinoma mortality. J Hepatol 67(2):302–309PubMedCrossRefGoogle Scholar
  3. 3.
    Llovet JM, Zucman-Rossi J, Pikarsky E et al (2016) Hepatocellular carcinoma. Nature reviews. Disease primers 2:16018PubMedCrossRefGoogle Scholar
  4. 4.
    Ananthakrishnan A, Gogineni V, Saeian K (2006) Epidemiology of primary and secondary liver cancers. Semin Interv Radiol 23(1):47–63CrossRefGoogle Scholar
  5. 5.
    Disibio G, French SW (2008) Metastatic patterns of cancers: results from a large autopsy study. Arch Pathol Lab Med 132(6):931–939PubMedGoogle Scholar
  6. 6.
    Golubnitschaja O, Sridhar KC (2016) Liver metastatic disease: new concepts and biomarker panels to improve individual outcomes. Clin Exp Metastasis 33(8):743–755PubMedCrossRefGoogle Scholar
  7. 7.
    Gao Q, Wang XY, Qiu SJ et al (2011) Tumor stroma reaction-related gene signature predicts clinical outcome in human hepatocellular carcinoma. Cancer Sci 102(8):1522–1531PubMedCrossRefGoogle Scholar
  8. 8.
    Hernandez-Gea V, Toffanin S, Friedman SL, Llovet JM (2013) Role of the microenvironment in the pathogenesis and treatment of hepatocellular carcinoma. Gastroenterology 144(3):512–527PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Hellerbrand C (2013) Hepatic stellate cells--the pericytes in the liver. Pflugers Arch 465(6):775–778PubMedCrossRefGoogle Scholar
  10. 10.
    Dubuisson L, Lepreux S, Bioulac-Sage P et al (2001) Expression and cellular localization of fibrillin-1 in normal and pathological human liver. J Hepatol 34(4):514–522PubMedCrossRefGoogle Scholar
  11. 11.
    Amann T, Bataille F, Spruss T et al (2009) Activated hepatic stellate cells promote tumorigenicity of hepatocellular carcinoma. Cancer Sci 100(4):646–653PubMedCrossRefGoogle Scholar
  12. 12.
    Yin C, Evason KJ, Asahina K, Stainier DY (2013) Hepatic stellate cells in liver development, regeneration, and cancer. J Clin Invest 123(5):1902–1910PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Thorgeirsson SS, Grisham JW (2002) Molecular pathogenesis of human hepatocellular carcinoma. Nat Genet 31(4):339–346PubMedCrossRefGoogle Scholar
  14. 14.
    Seyer JM, Hutcheson ET, Kang AH (1977) Collagen polymorphism in normal and cirrhotic human liver. J Clin Invest 59(2):241–248PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Murata K, Kudo M, Onuma F, Motoyama T (1984) Changes of collagen types at various stages of human liver cirrhosis. Hepato-Gastroenterology 31(4):158–161PubMedGoogle Scholar
  16. 16.
    Friedman SL (1999) Cytokines and fibrogenesis. Semin Liver Dis 19(2):129–140PubMedCrossRefGoogle Scholar
  17. 17.
    Ramadori G, Armbrust T (2001) Cytokines in the liver. Eur J Gastroenterol Hepatol 13(7):777–784PubMedCrossRefGoogle Scholar
  18. 18.
    Campbell JS, Hughes SD, Gilbertson DG et al (2005) Platelet-derived growth factor C induces liver fibrosis, steatosis, and hepatocellular carcinoma. Proc Natl Acad Sci U S A 102(9):3389–3394PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Mikula M, Proell V, Fischer AN, Mikulits W (2006) Activated hepatic stellate cells induce tumor progression of neoplastic hepatocytes in a TGF-beta dependent fashion. J Cell Physiol 209(2):560–567PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    van Zijl F, Mair M, Csiszar A et al (2009) Hepatic tumor-stroma crosstalk guides epithelial to mesenchymal transition at the tumor edge. Oncogene 28(45):4022–4033PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Fausto N (1999) Mouse liver tumorigenesis: models, mechanisms, and relevance to human disease. Semin Liver Dis 19(3):243–252PubMedCrossRefGoogle Scholar
  22. 22.
    Bedossa P, Peltier E, Terris B, Franco D, Poynard T (1995) Transforming growth factor-beta 1 (TGF-beta 1) and TGF-beta 1 receptors in normal, cirrhotic, and neoplastic human livers. Hepatology 21(3):760–766PubMedGoogle Scholar
  23. 23.
    Shirai Y, Kawata S, Tamura S et al (1994) Plasma transforming growth factor-beta 1 in patients with hepatocellular carcinoma. Comparison with chronic liver diseases. Cancer 73(9):2275–2279PubMedCrossRefGoogle Scholar
  24. 24.
    Nagahara T, Shiraha H, Sawahara H et al (2015) Hepatic stellate cells promote upregulation of epithelial cell adhesion molecule and epithelial-mesenchymal transition in hepatic cancer cells. Oncol Rep 34(3):1169–1177PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Paik SY, Park YN, Kim H, Park C (2003) Expression of transforming growth factor-beta1 and transforming growth factor-beta receptors in hepatocellular carcinoma and dysplastic nodules. Mod Pathol 16(1):86–96PubMedCrossRefGoogle Scholar
  26. 26.
    Copple BL (2010) Hypoxia stimulates hepatocyte epithelial to mesenchymal transition by hypoxia-inducible factor and transforming growth factor-beta-dependent mechanisms. Liver Int 30(5):669–682PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Caja L, Dituri F, Mancarella S et al (2018) TGF-beta and the tissue microenvironment: relevance in fibrosis and cancer. Int J Mol Sci 19(5):1294PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Eiro N, Vizoso FJ (2014) Importance of tumor/stroma interactions in prognosis of hepatocellular carcinoma. Hepatobiliary Surg Nutr 3(2):98–101PubMedPubMedCentralGoogle Scholar
  29. 29.
    Kubo N, Araki K, Kuwano H, Shirabe K (2016) Cancer-associated fibroblasts in hepatocellular carcinoma. World J Gastroenterol 22(30):6841–6850PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Sancho-Bru P, Juez E, Moreno M et al (2010) Hepatocarcinoma cells stimulate the growth, migration and expression of pro-angiogenic genes in human hepatic stellate cells. Liver Int 30(1):31–41PubMedCrossRefGoogle Scholar
  31. 31.
    Nguyen-Lefebvre AT, Horuzsko A (2015) Kupffer cell metabolism and function. J Enzymol Metab 1(1)Google Scholar
  32. 32.
    Van Overmeire E, Laoui D, Keirsse J, Bonelli S, Lahmar Q, Van Ginderachter JA (2014) STAT of the union: dynamics of distinct tumor-associated macrophage subsets governed by STAT1. Eur J Immunol 44(8):2238–2242PubMedCrossRefGoogle Scholar
  33. 33.
    Xiong XX, Qiu XY, Hu DX, Chen XQ (2017) Advances in hypoxia-mediated mechanisms in hepatocellular carcinoma. Mol Pharmacol 92(3):246–255PubMedCrossRefGoogle Scholar
  34. 34.
    McKeown SR (2014) Defining normoxia, physoxia and hypoxia in tumours-implications for treatment response. Br J Radiol 87(1035):20130676PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Kim KR, Moon HE, Kim KW (2002) Hypoxia-induced angiogenesis in human hepatocellular carcinoma. J Mol Med 80(11):703–714PubMedCrossRefGoogle Scholar
  36. 36.
    von Marschall Z, Cramer T, Hocker M, Finkenzeller G, Wiedenmann B, Rosewicz S (2001) Dual mechanism of vascular endothelial growth factor upregulation by hypoxia in human hepatocellular carcinoma. Gut 48(1):87–96CrossRefGoogle Scholar
  37. 37.
    Kin M, Torimura T, Ueno T, Inuzuka S, Tanikawa K (1994) Sinusoidal capillarization in small hepatocellular carcinoma. Pathol Int 44(10–11):771–778PubMedGoogle Scholar
  38. 38.
    Ni Y, Li JM, Liu MK et al (2017) Pathological process of liver sinusoidal endothelial cells in liver diseases. World J Gastroenterol 23(43):7666–7677PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Geraud C, Mogler C, Runge A et al (2013) Endothelial transdifferentiation in hepatocellular carcinoma: loss of Stabilin-2 expression in peri-tumourous liver correlates with increased survival. Liver Int. 33(9):1428–1440PubMedCrossRefGoogle Scholar
  40. 40.
    Marra F, Tacke F (2014) Roles for chemokines in liver disease. Gastroenterology 147(3):577–594. e571PubMedCrossRefGoogle Scholar
  41. 41.
    Sun X, Cheng G, Hao M et al (2010) CXCL12 / CXCR4 / CXCR7 chemokine axis and cancer progression. Cancer Metastasis Rev 29(4):709–722PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Kotsianidis I, Bouchliou I, Nakou E et al (2009) Kinetics, function and bone marrow trafficking of CD4+CD25+FOXP3+ regulatory T cells in myelodysplastic syndromes (MDS). Leukemia 23(3):510–518PubMedCrossRefGoogle Scholar
  43. 43.
    Shimizu Y, Dobashi K, Imai H et al (2009) CXCR4+FOXP3+CD25+ lymphocytes accumulate in CXCL12-expressing malignant pleural mesothelioma. Int J Immunopathol Pharmacol 22(1):43–51PubMedCrossRefGoogle Scholar
  44. 44.
    Wald O, Izhar U, Amir G et al (2006) CD4+CXCR4highCD69+ T cells accumulate in lung adenocarcinoma. J Immunol 177(10):6983–6990PubMedCrossRefGoogle Scholar
  45. 45.
    Wei S, Kryczek I, Edwards RP et al (2007) Interleukin-2 administration alters the CD4+FOXP3+ T-cell pool and tumor trafficking in patients with ovarian carcinoma. Cancer Res 67(15):7487–7494PubMedCrossRefGoogle Scholar
  46. 46.
    Hu F, Miao L, Zhao Y, Xiao YY, Xu Q (2015) A meta-analysis for C-X-C chemokine receptor type 4 as a prognostic marker and potential drug target in hepatocellular carcinoma. Drug Des Devel Ther 9:3625–3633PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Neve Polimeno M, Ierano C, D’Alterio C et al (2015) CXCR4 expression affects overall survival of HCC patients whereas CXCR7 expression does not. Cell Mol Immunol 12(4):474–482PubMedCrossRefGoogle Scholar
  48. 48.
    Xiang Z, Zeng Z, Tang Z et al (2009) Increased expression of vascular endothelial growth factor-C and nuclear CXCR4 in hepatocellular carcinoma is correlated with lymph node metastasis and poor outcome. Cancer J 15(6):519–525PubMedCrossRefGoogle Scholar
  49. 49.
    Xiang ZL, Zeng ZC, Tang ZY et al (2009) Chemokine receptor CXCR4 expression in hepatocellular carcinoma patients increases the risk of bone metastases and poor survival. BMC Cancer 9:176PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Zagzag D, Lukyanov Y, Lan L et al (2006) Hypoxia-inducible factor 1 and VEGF upregulate CXCR4 in glioblastoma: implications for angiogenesis and glioma cell invasion. Lab Invest 86(12):1221–1232PubMedCrossRefGoogle Scholar
  51. 51.
    Bocca C, Novo E, Miglietta A, Parola M (2015) Angiogenesis and fibrogenesis in chronic liver diseases. Cell Mol Gastroenterol Hepatol 1(5):477–488PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Ding BS, Nolan DJ, Butler JM et al (2010) Inductive angiocrine signals from sinusoidal endothelium are required for liver regeneration. Nature 468(7321):310–315PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    LeCouter J, Moritz DR, Li B et al (2003) Angiogenesis-independent endothelial protection of liver: role of VEGFR-1. Science 299(5608):890–893PubMedCrossRefGoogle Scholar
  54. 54.
    Maslak E, Gregorius A, Chlopicki S (2015) Liver sinusoidal endothelial cells (LSECs) function and NAFLD; NO-based therapy targeted to the liver. Pharmacol Rep 67(4):689–694PubMedCrossRefGoogle Scholar
  55. 55.
    Jia CC, Wang TT, Liu W et al (2013) Cancer-associated fibroblasts from hepatocellular carcinoma promote malignant cell proliferation by HGF secretion. PLoS One 8(5):e63243PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Guirouilh J, Castroviejo M, Balabaud C, Desmouliere A, Rosenbaum J (2000) Hepatocarcinoma cells stimulate hepatocyte growth factor secretion in human liver myofibroblasts. Int J Oncol 17(4):777–781PubMedGoogle Scholar
  57. 57.
    Guirouilh J, Le Bail B, Boussarie L et al (2001) Expression of hepatocyte growth factor in human hepatocellular carcinoma. J Hepatol 34(1):78–83PubMedCrossRefGoogle Scholar
  58. 58.
    Efimova EA, Glanemann M, Liu L et al (2004) Effects of human hepatocyte growth factor on the proliferation of human hepatocytes and hepatocellular carcinoma cell lines. Eur Surg Res 36(5):300–307PubMedCrossRefGoogle Scholar
  59. 59.
    Monvoisin A, Neaud V, De Ledinghen V et al (1999) Direct evidence that hepatocyte growth factor-induced invasion of hepatocellular carcinoma cells is mediated by urokinase. J Hepatol 30(3):511–518PubMedCrossRefGoogle Scholar
  60. 60.
    Suzuki A, Hayashida M, Kawano H, Sugimoto K, Nakano T, Shiraki K (2000) Hepatocyte growth factor promotes cell survival from fas-mediated cell death in hepatocellular carcinoma cells via Akt activation and Fas-death-inducing signaling complex suppression. Hepatology 32(4 Pt 1):796–802PubMedCrossRefGoogle Scholar
  61. 61.
    Horiguchi N, Takayama H, Toyoda M et al (2002) Hepatocyte growth factor promotes hepatocarcinogenesis through c-Met autocrine activation and enhanced angiogenesis in transgenic mice treated with diethylnitrosamine. Oncogene 21(12):1791–1799PubMedCrossRefGoogle Scholar
  62. 62.
    Zhao W, Zhang L, Yin Z et al (2011) Activated hepatic stellate cells promote hepatocellular carcinoma development in immunocompetent mice. Int J Cancer 129(11):2651–2661PubMedCrossRefGoogle Scholar
  63. 63.
    Taura K, De Minicis S, Seki E et al (2008) Hepatic stellate cells secrete angiopoietin 1 that induces angiogenesis in liver fibrosis. Gastroenterology 135(5):1729–1738PubMedCrossRefGoogle Scholar
  64. 64.
    Lin N, Chen Z, Lu Y, Li Y, Hu K, Xu R (2015) Role of activated hepatic stellate cells in proliferation and metastasis of hepatocellular carcinoma. Hepatol Res 45(3):326–336PubMedCrossRefGoogle Scholar
  65. 65.
    Wu SD, Ma YS, Fang Y, Liu LL, Fu D, Shen XZ (2012) Role of the microenvironment in hepatocellular carcinoma development and progression. Cancer Treat Rev 38(3):218–225PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Coulouarn C, Corlu A, Glaise D, Guenon I, Thorgeirsson SS, Clement B (2012) Hepatocyte-stellate cell cross-talk in the liver engenders a permissive inflammatory microenvironment that drives progression in hepatocellular carcinoma. Cancer Res 72(10):2533–2542PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Ju MJ, Qiu SJ, Fan J et al (2009) Peritumoral activated hepatic stellate cells predict poor clinical outcome in hepatocellular carcinoma after curative resection. Am J Clin Pathol 131(4):498–510PubMedCrossRefGoogle Scholar
  68. 68.
    Xing F, Saidou J, Watabe K (2010) Cancer associated fibroblasts (CAFs) in tumor microenvironment. Front Biosci 15:166–179PubMedCentralCrossRefPubMedGoogle Scholar
  69. 69.
    Lau EY, Lo J, Cheng BY et al (2016) Cancer-associated fibroblasts regulate tumor-initiating cell plasticity in hepatocellular carcinoma through c-Met/FRA1/HEY1 signaling. Cell Rep 15(6):1175–1189PubMedCrossRefGoogle Scholar
  70. 70.
    Chen WJ, Ho CC, Chang YL et al (2014) Cancer-associated fibroblasts regulate the plasticity of lung cancer stemness via paracrine signalling. Nat Commun 5:3472PubMedCrossRefGoogle Scholar
  71. 71.
    Erdogan B, Webb DJ (2017) Cancer-associated fibroblasts modulate growth factor signaling and extracellular matrix remodeling to regulate tumor metastasis. Biochem Soc Trans 45(1):229–236PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Cai XY, Gao Q, Qiu SJ et al (2006) Dendritic cell infiltration and prognosis of human hepatocellular carcinoma. J Cancer Res Clin Oncol 132(5):293–301PubMedCrossRefGoogle Scholar
  73. 73.
    Li YW, Qiu SJ, Fan J et al (2011) Intratumoral neutrophils: a poor prognostic factor for hepatocellular carcinoma following resection. J Hepatol 54(3):497–505PubMedCrossRefGoogle Scholar
  74. 74.
    Unitt E, Marshall A, Gelson W et al (2006) Tumour lymphocytic infiltrate and recurrence of hepatocellular carcinoma following liver transplantation. J Hepatol 45(2):246–253PubMedCrossRefGoogle Scholar
  75. 75.
    Dong P, Ma L, Liu L et al (2016) CD86(+)/CD206(+), diametrically polarized tumor-associated macrophages, predict hepatocellular carcinoma patient prognosis. Int J Mol Sci 17(3):320PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Pan QZ, Pan K, Zhao JJ et al (2013) Decreased expression of interleukin-36alpha correlates with poor prognosis in hepatocellular carcinoma. Cancer Immunol Immunother 62(11):1675–1685PubMedCrossRefGoogle Scholar
  77. 77.
    Gabrielson A, Wu Y, Wang H et al (2016) Intratumoral CD3 and CD8 T-cell densities associated with relapse-free survival in HCC. Cancer Immunol Res 4(5):419–430PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Chew V, Chen J, Lee D et al (2012) Chemokine-driven lymphocyte infiltration: an early intratumoural event determining long-term survival in resectable hepatocellular carcinoma. Gut 61(3):427–438PubMedCrossRefGoogle Scholar
  79. 79.
    Sun Y, Xi D, Ding W, Wang F, Zhou H, Ning Q (2014) Soluble FGL2, a novel effector molecule of activated hepatic stellate cells, regulates T-cell function in cirrhotic patients with hepatocellular carcinoma. Hepatol Int 8(4):567–575PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Yu MC, Chen CH, Liang X et al (2004) Inhibition of T-cell responses by hepatic stellate cells via B7-H1-mediated T-cell apoptosis in mice. Hepatology 40(6):1312–1321PubMedCrossRefGoogle Scholar
  81. 81.
    Ha TY (2009) The role of regulatory T cells in cancer. Immune Netw 9(6):209–235PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Filipazzi P, Huber V, Rivoltini L (2012) Phenotype, function and clinical implications of myeloid-derived suppressor cells in cancer patients. Cancer Immunol Immunother 61(2):255–263PubMedCrossRefGoogle Scholar
  83. 83.
    Zhao W, Zhang L, Xu Y et al (2014) Hepatic stellate cells promote tumor progression by enhancement of immunosuppressive cells in an orthotopic liver tumor mouse model. Lab Invest 94(2):182–191PubMedCrossRefGoogle Scholar
  84. 84.
    Chew V, Tow C, Teo M et al (2010) Inflammatory tumour microenvironment is associated with superior survival in hepatocellular carcinoma patients. J Hepatol 52(3):370–379PubMedCrossRefGoogle Scholar
  85. 85.
    Radaeva S, Sun R, Jaruga B, Nguyen VT, Tian Z, Gao B (2006) Natural killer cells ameliorate liver fibrosis by killing activated stellate cells in NKG2D-dependent and tumor necrosis factor-related apoptosis-inducing ligand-dependent manners. Gastroenterology 130(2):435–452PubMedCrossRefGoogle Scholar
  86. 86.
    Glassner A, Eisenhardt M, Kramer B et al (2012) NK cells from HCV-infected patients effectively induce apoptosis of activated primary human hepatic stellate cells in a TRAIL-, FasL- and NKG2D-dependent manner. Lab Invest 92(7):967–977PubMedCrossRefGoogle Scholar
  87. 87.
    Capece D, Fischietti M, Verzella D et al (2013) The inflammatory microenvironment in hepatocellular carcinoma: a pivotal role for tumor-associated macrophages. Biomed Res Int 2013:187204PubMedCrossRefGoogle Scholar
  88. 88.
    Mantovani A, Sozzani S, Locati M, Allavena P, Sica A (2002) Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23(11):549–555PubMedCrossRefGoogle Scholar
  89. 89.
    Gordon S, Taylor PR (2005) Monocyte and macrophage heterogeneity. Nat Rev Immunol 5(12):953–964PubMedCrossRefGoogle Scholar
  90. 90.
    Leyva-Illades D, McMillin M, Quinn M, Demorrow S (2012) Cholangiocarcinoma pathogenesis: role of the tumor microenvironment. Transl Gastrointest Cancer 1(1):71–80PubMedPubMedCentralGoogle Scholar
  91. 91.
    Hui L, Chen Y (2015) Tumor microenvironment: sanctuary of the devil. Cancer Lett 368(1):7–13PubMedCrossRefGoogle Scholar
  92. 92.
    Gentilini A, Rombouts K, Galastri S et al (2012) Role of the stromal-derived factor-1 (SDF-1)-CXCR4 axis in the interaction between hepatic stellate cells and cholangiocarcinoma. J Hepatol 57(4):813–820PubMedCrossRefGoogle Scholar
  93. 93.
    Okamoto K, Tajima H, Nakanuma S et al (2012) Angiotensin II enhances epithelial-to-mesenchymal transition through the interaction between activated hepatic stellate cells and the stromal cell-derived factor-1/CXCR4 axis in intrahepatic cholangiocarcinoma. Int J Oncol 41(2):573–582PubMedCrossRefGoogle Scholar
  94. 94.
    Sulpice L, Rayar M, Desille M et al (2013) Molecular profiling of stroma identifies osteopontin as an independent predictor of poor prognosis in intrahepatic cholangiocarcinoma. Hepatology 58(6):1992–2000CrossRefGoogle Scholar
  95. 95.
    Xiao X, Gang Y, Gu Y et al (2012) Osteopontin contributes to TGF-beta1 mediated hepatic stellate cell activation. Dig Dis Sci 57(11):2883–2891PubMedCrossRefGoogle Scholar
  96. 96.
    Chuaysri C, Thuwajit P, Paupairoj A, Chau-In S, Suthiphongchai T, Thuwajit C (2009) Alpha-smooth muscle actin-positive fibroblasts promote biliary cell proliferation and correlate with poor survival in cholangiocarcinoma. Oncol Rep 21(4):957–969PubMedGoogle Scholar
  97. 97.
    Okabe H, Beppu T, Hayashi H et al (2009) Hepatic stellate cells may relate to progression of intrahepatic cholangiocarcinoma. Ann Surg Oncol 16(9):2555–2564PubMedCrossRefGoogle Scholar
  98. 98.
    Utispan K, Thuwajit P, Abiko Y et al (2010) Gene expression profiling of cholangiocarcinoma-derived fibroblast reveals alterations related to tumor progression and indicates periostin as a poor prognostic marker. Mol Cancer 9:13PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Kim Y, Kim MO, Shin JS et al (2014) Hedgehog signaling between cancer cells and hepatic stellate cells in promoting cholangiocarcinoma. Ann Surg Oncol 21(8):2684–2698PubMedCrossRefGoogle Scholar
  100. 100.
    Terada M, Horisawa K, Miura S et al (2016) Kupffer cells induce Notch-mediated hepatocyte conversion in a common mouse model of intrahepatic cholangiocarcinoma. Sci Rep 6:34691PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    El Khatib M, Bozko P, Palagani V, Malek NP, Wilkens L, Plentz RR (2013) Activation of Notch signaling is required for cholangiocarcinoma progression and is enhanced by inactivation of p53 in vivo. PLoS One 8(10):e77433PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Sawitza I, Kordes C, Reister S, Haussinger D (2009) The niche of stellate cells within rat liver. Hepatology 50(5):1617–1624PubMedCrossRefGoogle Scholar
  103. 103.
    Fingas CD, Mertens JC, Razumilava N, Bronk SF, Sirica AE, Gores GJ (2012) Targeting PDGFR-beta in cholangiocarcinoma. Liver Int 32(3):400–409PubMedGoogle Scholar
  104. 104.
    Claperon A, Mergey M, Aoudjehane L et al (2013) Hepatic myofibroblasts promote the progression of human cholangiocarcinoma through activation of epidermal growth factor receptor. Hepatology 58(6):2001–2011PubMedCrossRefGoogle Scholar
  105. 105.
    Ohira S, Sasaki M, Harada K et al (2006) Possible regulation of migration of intrahepatic cholangiocarcinoma cells by interaction of CXCR4 expressed in carcinoma cells with tumor necrosis factor-alpha and stromal-derived factor-1 released in stroma. Am J Pathol 168(4):1155–1168PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Jung IH, Kim DH, Yoo DK et al (2018) In vivo study of natural killer (NK) cell cytotoxicity against cholangiocarcinoma in a nude mouse model. In Vivo 32(4):771–781PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Whiteside TL (2012) What are regulatory T cells (Treg) regulating in cancer and why? Semin Cancer Biol 22(4):327–334PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Subimerb C, Pinlaor S, Khuntikeo N et al (2010) Tissue invasive macrophage density is correlated with prognosis in cholangiocarcinoma. Mol Med Rep 3(4):597–605PubMedGoogle Scholar
  109. 109.
    Hasita H, Komohara Y, Okabe H et al (2010) Significance of alternatively activated macrophages in patients with intrahepatic cholangiocarcinoma. Cancer Sci 101(8):1913–1919CrossRefGoogle Scholar
  110. 110.
    Atanasov G, Hau HM, Dietel C et al (2015) Prognostic significance of macrophage invasion in hilar cholangiocarcinoma. BMC Cancer 15:790PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Chang J, Hisamatsu T, Shimamura K et al (2013) Activated hepatic stellate cells mediate the differentiation of macrophages. Hepatol Res 43(6):658–669PubMedCrossRefGoogle Scholar
  112. 112.
    Roos E, Dingemans KP, Van de Pavert IV, Van den Bergh-Weerman MA (1978) Mammary-carcinoma cells in mouse liver: infiltration of liver tissue and interaction with Kupffer cells. Br J Cancer 38(1):88–99PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Kan Z, Ivancev K, Lunderquist A, McCuskey PA, McCuskey RS, Wallace S (1995) In vivo microscopy of hepatic metastases: dynamic observation of tumor cell invasion and interaction with Kupffer cells. Hepatology 21(2):487–494PubMedCrossRefGoogle Scholar
  114. 114.
    Bayon LG, Izquierdo MA, Sirovich I, van Rooijen N, Beelen RH, Meijer S (1996) Role of Kupffer cells in arresting circulating tumor cells and controlling metastatic growth in the liver. Hepatology 23(5):1224–1231PubMedCrossRefGoogle Scholar
  115. 115.
    Kaplan RN, Rafii S, Lyden D (2006) Preparing the “soil”: the premetastatic niche. Cancer Res 66(23):11089–11093PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Kaplan RN, Riba RD, Zacharoulis S et al (2005) VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438(7069):820–827PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Zhao L, Lim SY, Gordon-Weeks AN et al (2013) Recruitment of a myeloid cell subset (CD11b/Gr1 mid) via CCL2/CCR2 promotes the development of colorectal cancer liver metastasis. Hepatology 57(2):829–839PubMedCrossRefGoogle Scholar
  118. 118.
    Olaso E, Santisteban A, Bidaurrazaga J, Gressner AM, Rosenbaum J, Vidal-Vanaclocha F (1997) Tumor-dependent activation of rodent hepatic stellate cells during experimental melanoma metastasis. Hepatology 26(3):634–642PubMedCrossRefGoogle Scholar
  119. 119.
    Shimizu S, Yamada N, Sawada T et al (2000) In vivo and in vitro interactions between human colon carcinoma cells and hepatic stellate cells. Jpn J Cancer Res 91(12):1285–1295PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Olaso E, Salado C, Egilegor E et al (2003) Proangiogenic role of tumor-activated hepatic stellate cells in experimental melanoma metastasis. Hepatology 37(3):674–685PubMedCrossRefGoogle Scholar
  121. 121.
    Gulubova MV (2004) Collagen type IV, laminin, alpha-smooth muscle actin (alphaSMA), alpha1 and alpha6 integrins expression in the liver with metastases from malignant gastrointestinal tumours. Clin Exp Metastasis 21(6):485–494PubMedCrossRefGoogle Scholar
  122. 122.
    Oktar SO, Yucel C, Demirogullari T et al (2006) Doppler sonographic evaluation of hemodynamic changes in colorectal liver metastases relative to liver size. J Ultrasound Med 25(5):575–582PubMedCrossRefGoogle Scholar
  123. 123.
    Discher DE, Mooney DJ, Zandstra PW (2009) Growth factors, matrices, and forces combine and control stem cells. Science 324(5935):1673–1677PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Kelly T (2005) Fibroblast activation protein-alpha and dipeptidyl peptidase IV (CD26): cell-surface proteases that activate cell signaling and are potential targets for cancer therapy. Drug Resist Updat 8(1–2):51–58PubMedCrossRefGoogle Scholar
  125. 125.
    Levy MT, McCaughan GW, Abbott CA et al (1999) Fibroblast activation protein: a cell surface dipeptidyl peptidase and gelatinase expressed by stellate cells at the tissue remodelling interface in human cirrhosis. Hepatology 29(6):1768–1778PubMedCrossRefGoogle Scholar
  126. 126.
    Narra K, Mullins SR, Lee HO et al (2007) Phase II trial of single agent Val-boroPro (Talabostat) inhibiting Fibroblast Activation Protein in patients with metastatic colorectal cancer. Cancer Biol Ther 6(11):1691–1699PubMedCrossRefGoogle Scholar
  127. 127.
    Ingham PW, Nakano Y, Seger C (2011) Mechanisms and functions of Hedgehog signalling across the metazoa. Nat Rev Genet 12(6):393–406PubMedCrossRefGoogle Scholar
  128. 128.
    Zhuang H, Cao G, Kou C, Liu T (2018) CCL2/CCR2 axis induces hepatocellular carcinoma invasion and epithelial-mesenchymal transition in vitro through activation of the Hedgehog pathway. Oncol Rep 39(1):21–30PubMedGoogle Scholar
  129. 129.
    El Khatib M, Kalnytska A, Palagani V et al (2013) Inhibition of hedgehog signaling attenuates carcinogenesis in vitro and increases necrosis of cholangiocellular carcinoma. Hepatology 57(3):1035–1045PubMedCrossRefGoogle Scholar
  130. 130.
    Wutka A, Palagani V, Barat S et al (2014) Capsaicin treatment attenuates cholangiocarcinoma carcinogenesis. PLoS One 9(4):e95605PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Belli C, Trapani D, Viale G et al (2018) Targeting the microenvironment in solid tumors. Cancer Treat Rev 65:22–32PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Hidenori Shiraha
    • 1
    Email author
  • Masaya Iwamuro
    • 1
  • Hiroyuki Okada
    • 1
  1. 1.Department of Gastroenterology and HepatologyOkayama University Faculty of MedicineOkayamaJapan

Personalised recommendations