Advertisement

Digital Control of an FFC NMR Relaxometer Power Supply

  • Rúben J. A. Lopes
  • Pedro J. Sebastião
  • Duarte M. Sousa
  • António RoqueEmail author
  • Elmano Margato
Conference paper
  • 321 Downloads
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 604)

Abstract

The fast field cycling (FFC) experimental technique allows to overcome a technical difficulty associated with the nuclear magnetic resonance (NMR) signal-to-noise ratio (SNR) at low frequency spin-lattice relaxation measurements when using conventional NMR spectrometers. Constituting a step forward than the classical analog approaches, in this paper, a digital control system for an FFC-NMR relaxometer power supply was developed. The hardware and software were designed to allow for the modulation of the Zeeman field as required by this technique. Experimental results show that under digital control the system performs fast transitions between the high and low magnetic flux density levels, i.e., the switching times obtained are in the millisecond range, and, assures a good stability of the field during the steady states. Comparative proton relaxometry measurements in two compounds (liquid crystal 5CB and ionic liquid [BMIM]BF4) were made to assess the digital control system performance.

Keywords

Digital control Nuclear magnetic resonance Digital PID 

Notes

Acknowledgements

This work was supported by national funds through Instituto Politécnico de Setúbal, ISEL/Instituto Politécnico de Lisboa, Fundação para a Ciência e a Tecnologia (FCT) with reference UID/CEC/50021/2019 and UID/CTM/04540/2019.

References

  1. 1.
    M. Levitt, Spin Dynamics: Basics of Nuclear Magnetic Resonance (Wiley, Chichester, 2001)Google Scholar
  2. 2.
    F. Noack, NMR field-cycling spectroscopy: principles and applications. Prog. NMR Spectrosc. 18, 171–276 (1986)CrossRefGoogle Scholar
  3. 3.
    R. Kimmich, E. Anoardo, Field-cycling NMR relaxometry. Prog. NMR Spectrosc. 44, 257–320 (2004)CrossRefGoogle Scholar
  4. 4.
    E. Anoardo, G. Galli, G. Ferrante, Fast-field-cycling NMR: applications and instrumentation. Appl. Magn. Reson. 20(3), 365–404 (2001)CrossRefGoogle Scholar
  5. 5.
    T. Farrar, E. Becker, Pulse and Fourier Transform NMR: Introduction to Theory and Methods (Academic Press, New York, 1971)Google Scholar
  6. 6.
    I. Matter, G. Scott, T. Grafendorfer, A. Macovski, S. Conolly, Rapid polarizing field cycling in magnetic resonance imaging. IEEE Trans. Med. Imaging 25(1), 84–93 (2006)CrossRefGoogle Scholar
  7. 7.
    P. Ross, L. Broche, D. Lurie, Rapid field-cycling MRI using fast spin-echo. Magn. Reson. Med. 73(3), 1120–1124 (2015)CrossRefGoogle Scholar
  8. 8.
    J. Pine, R. Davies, J. Lurie, Field-cycling NMR relaxometry with spatial selection. Magn. Reson. Med. 63(6), 1698–1702 (2010)CrossRefGoogle Scholar
  9. 9.
    J. Lurie et al., Fast field-cycling magnetic resonance imaging - Imagerie de resonance magnétique en champ cyclé, Multiscale NMR and relaxation/RMN et relaxation multi-échelles. C. R. Phys. 11(2), 136–148 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    F. Bonetto, E. Anoardo, Proton field-cycling nuclear magnetic resonance relaxometry in the smectic Amesophase of thermotropic cyanobiphenyls: effects of sonication. J. Chem. Phys. 121(1), 554–561 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    J. Lurie, R. Davies, A. Foster, J. Hutchison, Field-cycled PEDRI imaging of free radicals with detection at 450 mT. Magn. Reson. Imaging 23(2), 175–181 (2005)CrossRefGoogle Scholar
  12. 12.
    M. Sousa, P. Fernandes, G. Marques, A. Ribeiro, P. Sebastião, Novel pulsed switched power supply for a fast field cycling NMR spectrometer. Solid State Nucl. Magn. Reson. 25(1–3), 160–166 (2004)CrossRefGoogle Scholar
  13. 13.
    D. Sousa, G. Marques, J. Cascais, P. Sebastião, Desktop fast-field cycling nuclear magnetic resonance relaxometer. Solid State Nucl. Magn. Reson. 38(1), 36–43 (2010)CrossRefGoogle Scholar
  14. 14.
    A. Roque, D. Sousa, E. Margato, J. Maia, Current source of a FFC NMR relaxometer linearly controlled, in EPE13-15th European Conference on Power Electronics and Applications, Sept 2013Google Scholar
  15. 15.
    D. Sousa, G. Marques, P. Sebastiao, A. Ribeiro, New isolated gate bipolar transistor two-quadrant chopper power supply for a fast field cycling NMR spectrometer. Rev. Sci. Instrum. 74(3), 4521–4528 (2003)ADSCrossRefGoogle Scholar
  16. 16.
    R. Seitter, R. Kimmich, Magnetic resonance: relaxometers, in Encyclopedia of Spectroscopy and Spectrometry, (Academic Press, London, 1999), pp. 2000–2008CrossRefGoogle Scholar
  17. 17.
    J. Constantin, J. Zajicek, F. Brown, Fast field-cycling nuclear magnetic resonance spectrometer. Rev. Sci. Instrum. 67(6), 2113–2122 (1996) ADSCrossRefGoogle Scholar
  18. 18.
    E. Rommel, K. Mischker, G. Osswald, K. Schweikert, F. Noack, A powerful NMR field-cycling device using GTO’s and MOSFET’s for relaxation dispersion and zero-field studies. J. Magn. Reson. 70(2), 219–234 (1986)ADSGoogle Scholar
  19. 19.
    D. Sousa, E. Rommel, J. Santana, F. Silva, P. Sebastião, A. Ribeiro, Power supply for a fast field cycling NMR spectrometer using IGBTs operating in the active zone, in 7th European Conference on Power Electronics and Applications (EPE97), Trondheim, Norway, pp. 2.285–2.290, 1997Google Scholar
  20. 20.
    A. Roque, D. Sousa, E. Margato, J. Maia, G. Marques, Power source of a relaxometer - topology and linear control of the current, in Annual Seminar on Automation, Industrial Electronics and Instrumentation (SAAEI’13), Madrid – Espanha, 2013Google Scholar
  21. 21.
    K. Gilbert et al., Design of field-cycled magnetic resonance systems for small animal imaging. Phys. Med. Biol. 51(11), 2825–2841 (2006)CrossRefGoogle Scholar
  22. 22.
    G. Franklin, J. Powell, A. Emami-Naeini, Feedback Control of Dynamic Systems (Pearson Education, Upper Saddle River, NJ, 2011)zbMATHGoogle Scholar
  23. 23.
    K. Ogata, Modern Control Engineering, Instrumentation and Controls Series (Prentice Hall, Boston, 2010)Google Scholar
  24. 24.
    A. Redfield, W. Fite, H. Bleich, Precision high speed current regulators for occasionally switched inductive loads. Rev. Sci. Instrum. 39(5), 710–715 (1968)ADSCrossRefGoogle Scholar
  25. 25.
    I. Nathaniel et al., Noise performance of a precision pulsed electromagnet power supply for magnetic resonance imaging. IEEE Trans. Med. Imaging 27(1), 75–86 (2008)CrossRefGoogle Scholar
  26. 26.
    A. Roque, S. Pinto, J. Santana, D. Sousa, E. Margato, J. Maia, Dynamic behavior of two power supplies for FFC NMR relaxometers, in IEEE International Conference on Industrial Technology – ICIT, Athens, Greece, 2012Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Rúben J. A. Lopes
    • 1
  • Pedro J. Sebastião
    • 1
  • Duarte M. Sousa
    • 2
  • António Roque
    • 3
    Email author
  • Elmano Margato
    • 4
  1. 1.Department of Physics, Instituto Superior TécnicoUniversidade de LisboaLisbonPortugal
  2. 2.Department of Electrical and Computer Engineering, Instituto Superior Técnico & INESC-IDUniversidade de LisboaLisbonPortugal
  3. 3.Department of Electrical EngineeringEscola Superior de Tecnologia de Setúbal/Instituto Politécnico de SetúbalSetúbalPortugal
  4. 4.CEI, ISEL-Instituo Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, andINESC-IDLisbonPortugal

Personalised recommendations