Czochralski Method

  • Zbigniew GalazkaEmail author
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 293)


The Czochralski method is one of the leading research and industrial crystal growth technologies that enables to obtain large diameter single crystals of high structural quality at low production costs per volume unit. A possibility of obtaining bulk β-Ga2O3 single crystals by the Czochralski method expands the diversity of growth technologies for this compound towards large volumes and high quality suitable for epitaxial growth of layers and device fabrication. Ga2O3 is, however, thermally unstable at high temperatures and tends to decompose that has a high impact on the growth process, size, and structural quality of obtained crystals. Additionally, the growth process is also affected by electrical/optical properties of a growing β-Ga2O3 crystal. Ga2O3 thermodynamics combined with new technical solutions allowed to obtain 2-inch diameter cylindrical single crystals of β-Ga2O3 of high structural quality with further scale-up capabilities. Czochralski-grown bulk β-Ga2O3 single crystals can be easily doped with a diversity of elements to tune their electrical and optical properties. The bulk β-Ga2O3 single crystals can be obtained either as electrical insulators or semiconductors both with a high transparency in the UV and visible spectral regions.


Czochralski method Iridium crucible Iridium oxidation Bulk β-Ga2O3 single crystal Structural quality Thermodynamics Thermal stability Decomposition Growth atmosphere Oxygen concentration Free carrier absorption Doping Segregation coefficient Ultra-wide bandgap semiconductor Annealing 



I would like to express my gratitude to Dr. Detlef Klimm, Dr. Steffen Ganschow, Dr. Klaus Irmscher for helpful discussions. This work was partly performed in the framework of GraFOx, a Leibniz-Science Campus partially funded by the Leibniz Association, Germany.


  1. 1.
    J. Czochralski, Z. Phys. Chem. 92, 219 (1918)Google Scholar
  2. 2.
    R. Uecker, J. Cryst. Growth 401, 7 (2014)CrossRefGoogle Scholar
  3. 3.
    E.V. Gomperz, Z. Phys. 8, 184 (1922)CrossRefGoogle Scholar
  4. 4.
    E. Grüneisen, E. Goens, Phys. Z. 24, 506 (1923)Google Scholar
  5. 5.
    A.G. Hoyem, E.P.T. Tyndall, Phys. Rev. 33, 81 (1929)CrossRefGoogle Scholar
  6. 6.
    H. Walther, Rev. Sci. Instrum. 8, 406 (1937)CrossRefGoogle Scholar
  7. 7.
    J.B. Little, G.K. Teal, Phys. Rev. 78, 647 (1950)Google Scholar
  8. 8.
    W.C. Dash, J. Appl. Phys. 30, 459 (1959)CrossRefGoogle Scholar
  9. 9.
    K. Hoshikawa, H. Konda, H. Hirata, H. Nakanishi, Jpn. J. Appl. Phys. 19, L33 (1980)CrossRefGoogle Scholar
  10. 10.
    D.A. Petrov, V.S. Zemskov, Rost Kristallov 1, 262 (1957)Google Scholar
  11. 11.
    R. Gremmelmaier, O. Madelung, Z. Naturforsch. 8A, 333 (1953)Google Scholar
  12. 12.
    R. Gremmelmaier, Z. Naturforsch. 11A, 511 (1956)Google Scholar
  13. 13.
    E.A.P. Metz, R.C. Miller, R. Mazelsky, J. Appl. Phys. 33, 2016 (1962)CrossRefGoogle Scholar
  14. 14.
    K. Nassau, L.G. Van Uitert, J. Appl. Phys. 31, 1508 (1960)CrossRefGoogle Scholar
  15. 15.
    W. Bardsley, G.W. Green, C.H. Holliday, D.T.J. Hurle, J. Cryst. Growth 16, 277 (1972)CrossRefGoogle Scholar
  16. 16.
    T.R. Kyle, G. Zydzik, Mater. Res. Bull. 8, 443 (1973)CrossRefGoogle Scholar
  17. 17.
    V.I. Vasil’tsiv, Y. Zakarko, Zh. Prikl. Spektrosk. 39, 423 (1983)Google Scholar
  18. 18.
    Y. Tomm, P. Reiche, D. Klimm, T. Fukuda, J. Cryst. Growth 220, 510 (2000)CrossRefGoogle Scholar
  19. 19.
    Z. Galazka, R. Uecker, K. Irmscher, M. Albrecht, D. Klimm, M. Pietsch, M. Brutzam, R. Bertram, S. Ganschow, R. Fornari, Cryst. Res. Technol. 45, 1229 (2010)CrossRefGoogle Scholar
  20. 20.
    Z. Galazka, K. Irmscher, R. Uecker, R. Bertram, M. Pietsch, A. Kwasniewski, M. Naumann, T. Schulz, R. Schewski, D. Klimm, M. Bickermann, J. Cryst. Growth 404, 184 (2014)CrossRefGoogle Scholar
  21. 21.
    Z. Galazka, R. Uecker, D. Klimm, M. Bickermann, EP patent 3242965B1, 2019Google Scholar
  22. 22.
    Z. Galazka R. Uecker, D. Klimm, K. Irmscher, M. Naumann, M. Pietsch, A. Kwasniewski, R. Bertram, S. Ganschow, M. Bickermann, ECS J. Solid State Sci. Technol. 6, Q3007 (2017)Google Scholar
  23. 23.
    Z. Galazka, S. Ganschow, A. Fiedler, R. Bertram, D. Klimm, K. Irmscher, R. Schewski, M. Pietsch, M. Albrecht, M. Bickermann, J. Cryst. Growth 486, 82 (2018)CrossRefGoogle Scholar
  24. 24.
    K. Hoshikawa, E. Ohba, T. Kobayashi, J. Yanagisawa, C. Miyagawa, Y. Nakamura, J. Cryst. Growth 447, 36 (2016)CrossRefGoogle Scholar
  25. 25.
    M. Baldini, Z. Galazka, G. Wagner, Mat. Sci. Semicon. Proc. 78, 132 (2018)CrossRefGoogle Scholar
  26. 26.
    Z. Galazka, Semicond. Sci. Tech. 33, 113001 (2018)CrossRefGoogle Scholar
  27. 27.
    Z. Galazka, K. Irmscher, R. Schewski, I. M. Hanke, M. Pietsch, S. Ganschow, D. Klimm, A. Dittmar, A. Fiedler, T. Schroeder, M. Bickermann, J. Cryst. Growth 529, 125297 (2020)Google Scholar
  28. 28.
    Z. Galazka, R. Schewski, K. Irmscher, W. Drozdowski, M. E. Witkowski, M. Makowski, A. J. Wojtowicz, I. M. Hanke, M. Pietsch, T. Schulz, D. Klimm, S. Ganschow, A. Dittmar, A. Fiedler, T. Schroeder, M. Bickermann, J. Alloy. Compd. in print, 152842 (2019)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Leibniz-Institut für KristallzüchtungBerlinGermany

Personalised recommendations