Evaluation of Identity Information Loss in EEG-Based Biometric Systems

  • Meriem Romaissa BoubakeurEmail author
  • Guoyin Wang
  • Ke Liu
  • Karima Benatchba
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11976)


Recently, electroencephalogram (EEG) has been used as a biometric modality. An EEG-based biometric system allows an automatic recognition of people based on their EEG signals. The quantity and quality of identity information extracted from EEG determine the performance of the EEG-based biometric system. In this paper, we evaluate the loss in identity information through different signal segmentation scenarios using Autoregressive model and K-Nearest Neighbor classifier. Our objective is to find some criteria linked to data segmentation allowing to reduce as far as possible the simulated loss of identity information. Experiments were conducted on EEG publicly available datasets collected in resting state for both opened and closed eyes. Results show that overlapped segmentation with longer segments’ length stands the best to the simulated loss favoring larger percentages of overlap.


EEG Biometrics Person identification Segmentation 


  1. 1.
    Abo-Zahhad, M., Ahmed, S.M., Abbas, S.N.: State-of-the-art methods and future perspectives for personal recognition based on electroencephalogram signals. IET Biom. 4(3), 179–190 (2015)CrossRefGoogle Scholar
  2. 2.
    Boubakeur, M.R., Wang, G., Zhang, C., Liu, K.: EEG-based person recognition analysis and criticism. In: 2017 IEEE International Conference on Big Knowledge (ICBK), pp. 155–160. IEEE (2017)Google Scholar
  3. 3.
    Campisi, P., La Rocca, D.: Brain waves for automatic biometric-based user recognition. IEEE Trans. Inf. Forensics Secur. 9(5), 782–800 (2014)CrossRefGoogle Scholar
  4. 4.
    Chan, H.L., Kuo, P.C., Cheng, C.Y., Chen, Y.S.: Challenges and future perspectives on electroencephalogram-based biometrics in person recognition. Front. Neuroinform. 12, 66 (2018)CrossRefGoogle Scholar
  5. 5.
    Dmitry, O., et al.: Evolution and evaluation of biometric systems. In: Proceedings of the Second IEEE International Conference on Computational Intelligence for Security and Defense Applications (CISDA 2009), pp. 318–325 (2009)Google Scholar
  6. 6.
    Goldberger, A.L., et al.: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101(23), e215–e220 (2000)CrossRefGoogle Scholar
  7. 7.
    Kaewwit, C., Lursinsap, C., Sophatsathit, P., et al.: High accuracy EEG biometrics identification using ICA and AR model. J. ICT 16(2), 354–373 (2017)Google Scholar
  8. 8.
    La Rocca, D., Campisi, P., Scarano, G.: EEG biometrics for individual recognition in resting state with closed eyes. In: 2012 BIOSIG-Proceedings of the International Conference of Biometrics Special Interest Group (BIOSIG), pp. 1–12. IEEE (2012)Google Scholar
  9. 9.
    Maiorana, E., La Rocca, D., Campisi, P.: On the permanence of EEG signals for biometric recognition. IEEE Trans. Inf. Forensics Secur. 11(1), 163–175 (2015)CrossRefGoogle Scholar
  10. 10.
    Mao, C., Hu, B., Wang, M., Moore, P.: EEG-based biometric identification using local probability centers. In: 2015 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2015)Google Scholar
  11. 11.
    Mohammadi, G., Shoushtari, P., Molaee Ardekani, B., Shamsollahi, M.B.: Person identification by using ar model for EEG signals. Proceeding World Acad. Sci. Eng. Technol. 11, 281–285 (2006)Google Scholar
  12. 12.
    Paranjape, R., Mahovsky, J., Benedicenti, L., Koles, Z.: The electroencephalogram as a biometric. In: Canadian Conference on Electrical and Computer Engineering 2001. Conference Proceedings (Cat. No. 01TH8555), vol. 2, pp. 1363–1366. IEEE (2001)Google Scholar
  13. 13.
    Poh, N., Chan, C., Kittler, J., Fierrez, J., Galbally, J.: D3.3: description of metrics for the evaluation of biometric performance. Evaluation 1 (2011)Google Scholar
  14. 14.
    Poulos, M., Rangoussi, M., Chrissikopoulos, V., Evangelou, A.: Parametric person identification from the EEG using computational geometry. In: ICECS 1999, Proceedings of ICECS 1999 6th IEEE International Conference on Electronics, Circuits and Systems (Cat. No. 99EX357), vol. 2, pp. 1005–1008. IEEE (1999)Google Scholar
  15. 15.
    Rodrigues, D., Silva, G.F., Papa, J.P., Marana, A.N., Yang, X.S.: EEG-based person identification through binary flower pollination algorithm. Expert Syst. Appl. 62, 81–90 (2016)CrossRefGoogle Scholar
  16. 16.
    Singh, B., Mishra, S., Tiwary, U.S.: EEG based biometric identification with reduced number of channels. In: 2015 17th International Conference on Advanced Communication Technology (ICACT), pp. 687–691. IEEE (2015)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Meriem Romaissa Boubakeur
    • 1
    Email author
  • Guoyin Wang
    • 1
  • Ke Liu
    • 1
  • Karima Benatchba
    • 2
  1. 1.Chongqing Key Laboratory of Computational IntelligenceChongqing University of Posts and TelecommunicationsChongqingChina
  2. 2.Laboratoire des Méthodes de Conception de SystèmesEcole nationale Supérieure d’InformatiqueAlgerAlgeria

Personalised recommendations