Renormalization and Periods in Perturbative Algebraic Quantum Field Theory

  • Kasia RejznerEmail author
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 314)


In this paper I give an overview of mathematical structures appearing in perturbative algebraic quantum field theory (pAQFT) in the case of the massless scalar field on Minkowski spacetime. I also show how these relate to Kontsevich-Zagier periods. Next, I review the pAQFT version of the renormalization group flow and reformulate it in terms of Feynman graphs. This allows me to relate Kontsevich-Zagier periods to numbers appearing in computing the pAQFT \(\beta \)-function.


Quantum field theory Periods Epstein-Glaser renormalization 



I would like to thank ICMAT (Madrid) for hospitality and financial support. The ideas presented in this paper were developed during my stay in Madrid in 2014 as part of the “Research Trimester on Multiple Zeta Values, Multiple Polylogarithms, and Quantum Field Theory”.


  1. 1.
    Aluffi, P., Marcolli, M.: Parametric Feynman integrals and determinant hypersurfaces. Adv. Theor. Math. Phys. 14, 911–963 (2010)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bastiani, A.: Applications différentiables et variétés différentiables de dimension infinie. J. d’Anal. math. 13(1), 1–114 (1964)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bergbauer, C., Brunetti, R., Kreimer, D., Renormalization and resolution of singularities. arXiv:hep-th/0908.0633
  4. 4.
    Brunetti, R., Dütsch, M., Fredenhagen, K.: Perturbative algebraic quantum field theory and the renormalization groups. Adv. Theor. Math. Phys. 13(5), 1541–1599 (2009)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Brouder, C., Dang, N.V., Hélein, F.: A smooth introduction to the wavefront set. J. Phys. A 47(44) 443001 (2014)Google Scholar
  6. 6.
    Bloch, S., Esnault, H., Kreimer, D.: On motives associated to graph polynomials. Commun. Math. Phys. 267(1), 181–225 (2006)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Brunetti, R., Fredenhagen, K.: Microlocal analysis and interacting quantum field theories. Commun. Math. Phys. 208(3), 623–661 (2000)CrossRefGoogle Scholar
  8. 8.
    Bloch, S.: Motives associated to graphs. Jpn. J. Math. 2(1), 165–196 (2007)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Bogner, C.: Mathematical aspects of feynman integrals. Ph.D. thesis, MainzGoogle Scholar
  10. 10.
    Brown, F.: The massless higher-loop two-point function. Commun. Math. Phys. 287(3), 925–958 (2009)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Brown, F.: On the periods of some Feynman integrals (2009). arXiv:math.AGsps0910.0114]
  12. 12.
    Bogner, C., Weinzierl, S.: Periods and Feynman integrals. J. Math. Phys. 50(4), 042302 (2009)Google Scholar
  13. 13.
    Bogner, C., Weinzierl, S.: Feynman graph polynomials. Int. J. Mod. Phys. A 25(13), 2585–2618 (2010)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Ceyhan, O., Marcolli, M.: Feynman integrals and motives of configuration spaces. Commun. Math. Phys. 313, 35–70 (2012)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Ceyhan, O., Marcolli, M.: Algebraic renormalization and Feynman integrals in configuration spaces. Adv. Theor. Math. Phys. 18 (2013).
  16. 16.
    Dang, N.V.: Wick squares of the gaussian free field and Riemannian rigidity.
  17. 17.
    Dütsch, M., Fredenhagen, K.: Causal perturbation theory in terms of retarded products, and a proof of the action ward identity. Rev. Math. Phys. 16(10), 1291–1348 (2004)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Dütsch, M., Fredenhagen, K., Keller, K.J., Rejzner, K.: Dimensional regularization in position space and a forest formula for Epstein-Glaser renormalization. J. Math. Phys. 55(12), 122303 (2014)Google Scholar
  19. 19.
    Dütsch, M.: The scaling and mass expansion. Ann. Henri Poincare 16, 163–188 (2015)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Epstein, H., Glaser, V.: The role of locality in perturbation theory. AHP 19(3), 211–295 (1973)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Estrada, R., Kanwal, R.P.: Regularization, pseudofunction, and Hadamard finite part. J. Math. Anal. Appl. 141(1), 195–207 (1989)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Freedman, D.Z., Johnson, K., Latorre, J.: Differential regularization and renormalization: a new method of calculation in quantum field theory. Nucl. Phys. B 371(1–2), 353–414 (1992)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Gracia-Bondía, J.M.: Improved Epstein-Glaser renormalization in coordinate space I Euclidean framework. Math. Phys., Anal. Geom. 6(1), 59–88 (2003)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Gracia-Bondía, J.M., Gutiérrez, H., Várilly, J.C.: Improved Epstein-Glaser renormalization in \(x\)-space versus differential renormalization. Nuclear Physics B 886, 824–869 (2014)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Gracia-Bondía, J.M., Lazzarini, S.: Connes-Kreimer-Epstein-Glaser renormalization (2000). arXiv:hep-th/0006106
  26. 26.
    Hollands, S.: Renormalized quantum Yang-Mills fields in curved spacetime. Rev. Math. Phys. 20, 1033–1172 (2008). arXiv:grspsqcsps705.3340v3
  27. 27.
    Hollands, S.: Correlators, Feynman diagrams, and quantum no-hair in De-Sitter spacetime. Commun. Math. Phys. 319, 1–68 (2013)CrossRefGoogle Scholar
  28. 28.
    Hörmander, L.: The analysis of the linear partial differential operators I: Distribution theory and Fourier analysis. Classics in Mathematics. Springer, Berlin (2003)CrossRefGoogle Scholar
  29. 29.
    Hollands, S., Wald, R.M.: Local Wick polynomials and time ordered products of quantum fields in curved spacetime. Commun. Math. Phys. 223(2), 289–326 (2001)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Hollands, S., Wald, R.M.: Existence of local covariant time ordered products of quantum fields in curved spacetime. Commun. Math. Phys. 231(2), 309–345 (2002)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Hollands, S., Wald, R.M.: On the renormalization group in curved spacetime. Commun. Math. Phys. 237, 123–160 (2002)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Hollands, S., Wald, R.M.: Axiomatic quantum field theory in curved spacetime. pp. 1–44Google Scholar
  33. 33.
    Itzykson, C., Zuber, J.-B.:Quantum field theory. Courier Corporation, 2006Google Scholar
  34. 34.
    Keller, K.J.: Dimensional regularization in position space and a forest formula for regularized epstein-glaser renormalization. Ph.D. thesis, University of Hamburg (2010). arXiv:math-ph/1006.2148
  35. 35.
    Kontsevich, M., Zagier, D.: Periods, 2001. In: Engquis, B., Schmid, W. (Eds.) Mathematics unlimited - 2001 and beyond, pp. 771–808 (2001)Google Scholar
  36. 36.
    Neeb, K.H.: Monastir summer school. Infinite-dimensional Lie groups, TU Darmstadt Preprint 2433 (2006)Google Scholar
  37. 37.
    Nikolov, N.M., Stora, R., Todorov, I.: Renormalization of massless Feynman amplitudes in configuration space. Rev. Math. Phys. 26, 1430002 (2014)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Pinter, G.: The Hopf algebra structure of Connes and Kreimer in Epstein-Glaser renormalization. Prog. Theor. Phys. 54, 227–233 (2000)MathSciNetzbMATHGoogle Scholar
  39. 39.
    Prange, D.: Epstein-Glaser renormalization and differential renormalization. J. Phys. A Math. Gen. 32(11), 2225 (1999)Google Scholar
  40. 40.
    Popineau, G., Stora, R.: A pedagogical remark on the main theorem of perturbative renormalization theory. Nucl. Phys. B 912, 70–78 (2016)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Rejzner, K.: Perturbative Algebraic Quantum Field Theory. An introduction for Mathematicians, Mathematical Physics Studies, Springer (2016)Google Scholar
  42. 42.
    Schnetz, O.: Quantum periods: A census of \(\varphi ^4\)-transcendentals. Commun. Num. Theor. Phys. 4, 1–48 (2010)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Speer, E.R.: On the structure of analytic renormalization. Commun. Math. Phys. 23(1), 23–36 (1971)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Stanley, R.P.: Spanning trees and a conjecture of Kontsevich. Ann. Comb. 2(4), 351–363 (1998)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Steinmann, O.: Perturbation expansions in axiomatic field theory, vol. 11. Springer, Berlin (1971)zbMATHGoogle Scholar
  46. 46.
    Stora, R.: Pedagogical experiments in renormalized perturbation theory, contribution to the conference . In: Theory of Renormalization and Regularization. Hesselberg, Germany (2002). FebruaryGoogle Scholar
  47. 47.
    Todorov, I.: Relativistic causality and position space renormalization. Nucl. Phys. B 912, 79–87 (2016)MathSciNetCrossRefGoogle Scholar
  48. 48.
    Tutte, W.: Graph theory, encyclopedia of mathematics, vol. 21. Cambridge University Press, Cambridge (1984)Google Scholar
  49. 49.
    Weinzierl, S.: The art of computing loop integrals. In: Binder, I., Kreimer, D. (eds.) Proceedings of the Workshop on Renormalization and Universality in Mathematical Physics. Providence, Am. Math. Soc. pp. 345–395 (2007)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of YorkYorkUK

Personalised recommendations