Use in Arthrodesis

  • Kyle M. SchweserEmail author
  • Brett D. Crist


Arthrodesis is typically reserved as a salvage procedure, can be performed utilizing multiple fixation constructs, and leads to successful fusion when biomechanical principles are followed. General principles for bony union such as joint preparation, compression, bony apposition, mechanical alignment, stable fixation, and appropriate strain at the arthrodesis site are observed with intramedullary nailing just like any other fixation construct. However, the use of intramedullary nails for arthrodesis is unique in its ability to limit soft tissue dissection and provide support to the fusion through its load-sharing properties. It is typically limited to knee and hindfoot fusions because the regional anatomy easily accommodates medullary fixation. Obtaining primary bony fusion is the goal of any arthrodesis; however, nails are particularly well suited for fusion through both primary and secondary healing, thus expanding the indications and abilities of a surgeon to achieve fusion. Intramedullary nailing offers its own unique challenges, particularly in obtaining and maintaining joint compression, which is likely contributory to nonunions when they occur, but can be mitigated by maximizing the biomechanical principles observed.


Intramedullary nails Arthrodesis Fusion Biomechanics Case examples 


  1. 1.
    Thomas RL, Sathe V, Habib SI. The use of intramedullary nails in tibiotalocalcaneal arthrodesis. J Am Acad Orthop Surg. 2012;20(1):1–7.CrossRefGoogle Scholar
  2. 2.
    Parker L, Singh D. (i) The principles of foot and ankle arthrodesis (Mini-symposium foot and ankle). Orthop Trauma. 2009;23(6):385–94.CrossRefGoogle Scholar
  3. 3.
    Ray RG, Ching RP, Christensen JC, Hansen ST Jr. Biomechanical analysis of the first metatarsocuneiform arthrodesis. J Foot Ankle Surg. 1998;37(5):376–85.CrossRefGoogle Scholar
  4. 4.
    Kowalski RJ, Ferrara LA, Benzel EC. Biomechanics of bone fusion. Neurosurg Focus. 2001;10(4):E2.CrossRefGoogle Scholar
  5. 5.
    Miller SD. Compression forces of internal and external ankle fixation devices with simulated bone resorption. Foot Ankle Int. 2010;31(5):469–70; author reply 70–1.CrossRefGoogle Scholar
  6. 6.
    Fragomen AT, Meyers KN, Davis N, Shu H, Wright T, Rozbruch SR. A biomechanical comparison of micromotion after ankle fusion using 2 fixation techniques: intramedullary arthrodesis nail or Ilizarov external fixator. Foot Ankle Int. 2008;29(3):334–41.CrossRefGoogle Scholar
  7. 7.
    McCormick JJ, Li X, Weiss DR, Billiar KL, Wixted JJ. Biomechanical investigation of a novel ratcheting arthrodesis nail. J Orthop Surg Res. 2010;5:74.CrossRefGoogle Scholar
  8. 8.
    Berson L, McGarvey WC, Clanton TO. Evaluation of compression in intramedullary hindfoot arthrodesis. Foot Ankle Int. 2002;23(11):992–5.CrossRefGoogle Scholar
  9. 9.
    Mückley T, Hoffmeier K, Klos K, Petrovitch A, von Oldenburg G, Hofmann GO. Angle-stable and compressed angle-stable locking for tibiotalocalcaneal arthrodesis with retrograde intramedullary nails. Biomechanical evaluation. J Bone Joint Surg Am. 2008;90(3):620–7.CrossRefGoogle Scholar
  10. 10.
    Kaspar K, Schell H, Seebeck P, Thompson MS, Schutz M, Haas NP, et al. Angle stable locking reduces interfragmentary movements and promotes healing after unreamed nailing. Study of a displaced osteotomy model in sheep tibiae. J Bone Joint Surg Am. 2005;87(9):2028–37.CrossRefGoogle Scholar
  11. 11.
    Woods JB, Burns PR. Advances in intramedullary nail fixation in foot and ankle surgery. Clin Podiatr Med Surg. 2011;28(4):633–48.CrossRefGoogle Scholar
  12. 12.
    Mückley T, Eichorn S, Hoffmeier K, von Oldenburg G, Speitling A, Hoffmann GO, Bühren V. Biomechanical evaluation of primary stiffness of tibiotalocalcaneal fusion with intramedullary nails. Foot Ankle Int. 2007;28(2):224–31.CrossRefGoogle Scholar
  13. 13.
    Yakacki CM, Khalil HF, Dixon SA, Gall K, Pacaccio DJ. Compression forces of internal and external ankle fixation devices with simulated bone resorption. Foot Ankle Int. 2010;31(1):76–85.CrossRefGoogle Scholar
  14. 14.
    Griffin MJ, Coughlin MJ. Evaluation of midterm results of the Panta nail: an active compression tibiotalocalcaneal arthrodesis device. J Footo Ankle Surg. 2018;57(1):74–80.CrossRefGoogle Scholar
  15. 15.
    Marsell R, Einhorn TA. The biology of fracture healing. Injury. 2011;42(6):551–5.CrossRefGoogle Scholar
  16. 16.
    Berend ME, Glisson RR, Nunley JA. A biomechanical comparison of intramedullary nail and crossed lag screw fixation for tibiotalocalcaneal arthrodesis. Foot Ankle Int. 1997;18(10):639–43.CrossRefGoogle Scholar
  17. 17.
    Alfahd U, Roth SE, Stephen D, Whyne CM. Biomechanical comparison of intramedullary nail and blade plate fixation for tibiotalocalcaneal arthrodesis. J Orthop Trauma. 2005;19(10):703–8.CrossRefGoogle Scholar
  18. 18.
    Froelich J, Idusuyi OB, Clark D, Kogler GF, Paliwal M, Dyrstad B, et al. Torsional stiffness of an intramedullary nail versus blade plate fixation for tibiotalocalcaneal arthrodesis: a biomechanical study. J Surg Orthop Adv. 2010;19(2):109–13.PubMedGoogle Scholar
  19. 19.
    Kim K, Snir N, Schwarzkopf R. Modern techniques in knee arthrodesis. Int J Orthop. 2016;3(1):487–96.CrossRefGoogle Scholar
  20. 20.
    Peterson JM, Chlebek C, Clough AM, Wells AK, Batzinger KE, Houston JM, et al. Stiffness matters: Part II – The effects of plate stiffness on load-sharing and the progression of fusion following ACDF in vivo. Spine (Phila Pa 1976). 2018;43(18):E1069–76. Scholar
  21. 21.
    Bong MR, Kummer FJ, Koval KJ, Egol KA. Intramedullary nailing of the lower extremity: biomechanics and biology. J Am Acad Orthop Surg. 2007;15(2):97–106.CrossRefGoogle Scholar
  22. 22.
    Schneider E, Michel MC, Genge M, Zuber K, Ganz R, Perren SM. Loads acting in an intramedullary nail during fracture healing in the human femur. J Biomech. 2001;34(7):849–57.CrossRefGoogle Scholar
  23. 23.
    Lindsey RW, Gugala Z, Milne E, Sun M, Gannon FH, Latta LL. The efficacy of cylindrical titanium mesh cage for the reconstruction of a critical-size canine segmental femoral diaphyseal defect. J Orthop Res. 2006;24(7):1438–53.CrossRefGoogle Scholar
  24. 24.
    Lindsey RW, Gugala Z. Cylindrical titanium mesh cage for the reconstruction of long bone defects. Osteo Trauma Care. 2004;12(3):108–15.CrossRefGoogle Scholar
  25. 25.
    Frigg A, Dougall H, Boyd S, Nigg B. Can porous tantalum be used to achieve ankle and subtalar arthrodesis? A pilot study. Clin Orthop Relat Res. 2010;468(1):209–16.CrossRefGoogle Scholar
  26. 26.
    Henricson A, Rydholm U. Use of a trabecular metal implant in ankle arthrodesis after failed total ankle replacement: a short-term follow-up of 13 patients. Acta Orthop. 2010;81(6):745–7.CrossRefGoogle Scholar
  27. 27.
    Bussewitz B, DeVries JG, Dujela M, McAlister JE, Hyer CF, Berlet GC. Retrograde intramedullary nail with femoral head allograft for large deficit tibiotalocalcaneal arthrodesis. Foot Ankle Int. 2014;35(7):706–11.CrossRefGoogle Scholar
  28. 28.
    Mauffrey C, Zagrocki L, Jordan RW, Seligson D. Retrograde tibiotalocalcaneal nails: an option for complex open pilon fractures. Current Orthop Pract. 2012;23(5):507–11.CrossRefGoogle Scholar
  29. 29.
    Blake Peterson, Sonny Bal, Ajay Aggarwal, Brett Crist, (2016) Novel Technique: Knee Arthrodesis Using Trabecular Metal Cones with Intramedullary Nailing and Intramedullary Autograft. The Journal of Knee Surgery. 29(06):510–15.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Orthopaedic Trauma Service, Department of Orthopaedic SurgeryUniversity of MissouriColumbiaUSA

Personalised recommendations