Biomechanics of Intramedullary Nails Relative to Fracture Fixation and Deformity Correction

  • Justin C. Woods
  • Gregory J. Della RoccaEmail author


Modern intramedullary nailing began in the World War II era with Gerhard Küntscher’s intramedullary implants. Multiple design advances have followed, and medullary nailing has become the workhorse in the armamentarium of the orthopedic trauma surgeon for long bone fracture and deformity care. Current nail design features that have an effect on nail biomechanics include the following: material (metal) properties, cross-sectional shape, diameter, curvature of the nail, and the ability to place interlocking devices (such as bolts). Extrinsic factors, such as reaming of the medullary canal, inherent fracture stability (fracture pattern, including comminution or spiral configuration), and the use of adjuncts for stability (such as blocking or “poller” screws), also affect biomechanics of fracture fixation. This chapter will describe biomechanics of intramedullary nailing, with illustrative examples.


Biomechanics Intramedullary nails Fracture Deformity Case examples 


  1. 1.
    Küntscher G. The intramedullary nailing of fractures. Clin Orthop Relat Res. 1968;60:5–11.Google Scholar
  2. 2.
    University of Washington. Young’s modulus. Accessed 13 Oct 2019.
  3. 3.
    AZO Materials. Stainless Steel – Grade 316L – Properties, Fabrication and Applications (UNS S31603). 18 Feb 2004. Sydney, Australia. Accessed 13 Oct 2019.
  4. 4.
    Cuppone M, Seedhom BB, Berry E, Ostell AE. The longitudinal Young’s modulus of cortical bone in the midshaft of human femur and its correlation with CT scanning data. Calcif Tissue Int. 2004;74(3):302–9.CrossRefGoogle Scholar
  5. 5.
    AZO Materials. U.S.Titanium Industry Inc. Titanium Alloys – Ti6Al4V Grade 5. 30 Jul 2002. Accessed 13 Oct 2019.
  6. 6.
    Kempf I, Grosse A, Beck G. Closed locked intramedullary nailing. Its application to comminuted fractures of the femur. J Bone Joint Surg Am. 1985;67(5):709–20.CrossRefGoogle Scholar
  7. 7.
    Eichinger JK, Balog TP, Grassbaugh JA. Intramedullary fixation of clavicle fractures: anatomy, indications, advantages, and disadvantages. J Am Acad Orthop Surg. 2016;24(7):455–64.CrossRefGoogle Scholar
  8. 8.
    Zhao L, Wang B, Bai X, Liu Z, Gao H, Li Y. Plate fixation versus intramedullary nailing for both-bone forearm fractures: a meta-analysis of randomized controlled trials and cohort studies. World J Surg. 2017;41(3):722–33.CrossRefGoogle Scholar
  9. 9.
    Pace JL. Pediatric and adolescent forearm fractures: current controversies and treatment recommendations. J Am Acad Orthop Surg. 2016;24(11):780–8.CrossRefGoogle Scholar
  10. 10.
    Bernstein M, Fragomen A, Rozbruch SR. Tibial bone transport over an intramedullary nail using cable and pulleys. JBJS Essent Surg Tech. 2018;8(1):e9.CrossRefGoogle Scholar
  11. 11.
    Markolf KL, Cheung E, Joshi NB, Boguszewski DV, Petrigliano FA, McAllister DR. Plate versus intramedullary nail fixation of anterior tibial stress fractures: a biomechanical study. Am J Sports Med. 2016;44(6):590–6.CrossRefGoogle Scholar
  12. 12.
    Märdian S, Schaser KD, Duda GN, Heyland M. Working length of locking plates determines interfragmentary movement in distal femur fractures under physiological loading. Clin Biomech (Bristol, Avon). 2015;30(4):391–6.CrossRefGoogle Scholar
  13. 13.
    Ma JX, Wang J, Xu WG, Yu JT, Yang Y, Ma XL. Biomechanical outcome of proximal femoral nail antirotation is superior to proximal femoral locking compression plate for reverse oblique intertrochanteric fractures: a biomechanical study of intertrochanteric fractures. Acta Orthop Traumatol Turc. 2015;49(4):426–32.PubMedGoogle Scholar
  14. 14.
    Augat P, Rapp S, Claes L. A modified hip screw incorporating injected cement for the fixation of osteoporotic trochanteric fractures. J Orthop Trauma. 2002;16(5):311–6.CrossRefGoogle Scholar
  15. 15.
    Ito K, Hungerbühler R, Wahl D, Grass R. Improved intramedullary nail interlocking in osteoporotic bone. J Orthop Trauma. 2001;15(3):192–6.CrossRefGoogle Scholar
  16. 16.
    Tencer AF, Sherman MC, Johnson KD. Biomechanical factors affecting fracture stability and femoral bursting in closed intramedullary rod fixation of femur fractures. J Biomech Eng. 1985;107(2):104–11.CrossRefGoogle Scholar
  17. 17.
    Egol KA, Chang EY, Cvitkovic J, Kummer FJ, Koval KJ. Mismatch of current intramedullary nails with the anterior bow of the femur. J Orthop Trauma. 2004;18(7):410–5.CrossRefGoogle Scholar
  18. 18.
    Bazylewicz DB, Egol KA, Koval KJ. Cortical encroachment after cephalomedullary nailing of the proximal femur: evaluation of a more anatomic radius of curvature. J Orthop Trauma. 2013;27(6):303–7.CrossRefGoogle Scholar
  19. 19.
    Roberts JW, Libet LA, Wolinsky PR. Who is in danger? Impingement and penetration of the anterior cortex of the distal femur during intramedullary nailing of proximal femur fractures: preoperatively measurable risk factors. J Trauma Acute Care Surg. 2012;73(1):249–54.CrossRefGoogle Scholar
  20. 20.
    Collinge CA, Beltran CP. Does modern nail geometry affect positioning in the distal femur of elderly patients with hip fractures? A comparison of otherwise identical intramedullary nails with a 200 versus 150 cm radius of curvature. J Orthop Trauma. 2013;27(6):299–302.CrossRefGoogle Scholar
  21. 21.
    Strauss E, Frank J, Lee J, Kummer FJ, Tejwani N. Helical blade versus sliding hip screw for treatment of unstable intertrochanteric hip fractures: a biomechanical evaluation. Injury. 2006;37(10):984–9.CrossRefGoogle Scholar
  22. 22.
    Tejwani N, Polonet D, Wolinsky PR. Controversies in the intramedullary nailing of proximal and distal tibia fractures. J Am Acad Orthop Surg. 2014;22(10):665–73.CrossRefGoogle Scholar
  23. 23.
    Mehling I, Hoehle P, Sternstein W, Blum J, Rommens PM. Nailing versus plating for comminuted fractures of the distal femur: a comparative biomechanical in vitro study of three implants. Eur J Trauma Emerg Surg. 2013;39(2):139–46.CrossRefGoogle Scholar
  24. 24.
    Freeman AL, Craig MR, Schmidt AH. Biomechanical comparison of tibial nail stability in a proximal third fracture: do screw quantity and locked, interlocking screws make a difference? J Orthop Trauma. 2011;25(6):333–9.CrossRefGoogle Scholar
  25. 25.
    Höntzsch D, Schaser KD, Hofmann GO, Pohlemann T, Hem ES, Rothenbach E, et al. Evaluation of the effectiveness of the angular stable locking system in patients with distal tibial fractures treated with intramedullary nailing: a multicenter randomized controlled trial. J Bone Joint Surg Am. 2014;96(22):1889–97.CrossRefGoogle Scholar
  26. 26.
    Krettek C, Miclau T, Schandelmaier P, Stephan C, Möhlmann U, Tscherne H. The mechanical effect of blocking screws ("Poller screws") in stabilizing tibia fractures with short proximal or distal fragments after insertion of small-diameter intramedullary nails. J Orthop Trauma. 1999;13(8):550–3.CrossRefGoogle Scholar
  27. 27.
    Krettek C, Stephan C, Schandelmaier P, Richter M, Pape HC, Miclau T. The use of Poller screws as blocking screws in stabilising tibial fractures treated with small diameter intramedullary nails. J Bone Joint Surg Br. 1999;81(6):963–8.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Orthopaedic SurgeryUniversity of MissouriColumbiaUSA

Personalised recommendations