Advertisement

Locked Plating

  • Jason A. LoweEmail author
Chapter
  • 70 Downloads

Abstract

Achieving stable fracture fixation can be difficult when fractures include short articular segments or poor bone quality as seen in osteoporosis. Locking plate technology increased the ability to achieve and maintain fracture fixation by relying on screw plate interface rather than friction between the plate and bone generated by conventional non-locking screws. Locking systems including first-generation uniaxial locking screws, polyaxially locking screws, and locking screws that allow for axial motion affect the fracture construct’s biomechanical properties, including yield strength and stiffness, which in turn can promote or suppress bone healing. Finding the balance between fracture fixation strong enough to resist physiological loading but not overly stiff that inhibits bone healing remains challenging even for the most experienced surgeons. This chapter reviews the biomechanics of locked plating—its risks, benefits, and failures.

Keywords

Locked plating Unidirectional screw Dynamic locking Variable angle locking Biomechanics 

References

  1. 1.
    Egol KA, Kubiak EN, Fulkerson E, Kummer FJ, Koval KJ. Biomechanics of locked plates and screws. J Orthop Trauma. 2004;18(8):488–93.CrossRefGoogle Scholar
  2. 2.
    Perren SM, Matter P. Evolution of AO philosophy. Acta Chir Orthop Traumatol Cechoslov. 2003;70(4):205–6.Google Scholar
  3. 3.
    Perren SM. Backgrounds of the technology of internal fixators. Injury. 2003;34(Suppl 2):B1–3.CrossRefGoogle Scholar
  4. 4.
    Perren SM, Matter P, Ruedi R, Allgower M. Biomechanics of fracture healing after internal fixation. Surg Annu. 1975;7:361–90.PubMedGoogle Scholar
  5. 5.
    Haas N, Hauke C, Schutz M, Kaab M, Perren SM. Treatment of diaphyseal fractures of the forearm using the Point Contact Fixator (PC-Fix): results of 387 fractures of a prospective multicentric study (PC-Fix II). Injury. 2001;32(Suppl 2):B51–62.CrossRefGoogle Scholar
  6. 6.
    Tepic S, Remiger AR, Morikawa K, Predieri M, Perren SM. Strength recovery in fractured sheep tibia treated with a plate or an internal fixator: an experimental study with a two-year follow-up. J Orthop Trauma. 1997;11(1):14–23.CrossRefGoogle Scholar
  7. 7.
    Beltran MJ, Collinge CA, Gardner MJ. Stress modulation of fracture fixation implants. J Am Acad Orthop Surg. 2016;24(10):711–9.CrossRefGoogle Scholar
  8. 8.
    Gautier E, Sommer C. Guidelines for the clinical application of the LCP. Injury. 2003;34(Suppl 2):B63–76.CrossRefGoogle Scholar
  9. 9.
    Stoffel K, Dieter U, Stachowiak G, Gachter A, Kuster MS. Biomechanical testing of the LCP–how can stability in locked internal fixators be controlled? Injury. 2003;34(Suppl 2):B11–9.CrossRefGoogle Scholar
  10. 10.
    Lujan TJ, Henderson CE, Madey SM, Fitzpatrick DC, Marsh JL, Bottlang M. Locked plating of distal femur fractures leads to inconsistent and asymmetric callus formation. J Orthop Trauma. 2010;24(3):156–62.CrossRefGoogle Scholar
  11. 11.
    Ahmad M, Nanda R, Bajwa AS, Candal-Couto J, Green S, Hui AC. Biomechanical testing of the locking compression plate: when does the distance between bone and implant significantly reduce construct stability? Injury. 2007;38(3):358–64.CrossRefGoogle Scholar
  12. 12.
    Doornink J, Fitzpatrick DC, Boldhaus S, Madey SM, Bottlang M. Effects of hybrid plating with locked and nonlocked screws on the strength of locked plating constructs in the osteoporotic diaphysis. J Trauma. 2010;69(2):411–7.CrossRefGoogle Scholar
  13. 13.
    Gardner MJ, Griffith MH, Demetrakopoulos D, Brophy RH, Grose A, Helfet DL, et al. Hybrid locked plating of osteoporotic fractures of the humerus. J Bone Joint Surg Am. 2006;88(9):1962–7.PubMedGoogle Scholar
  14. 14.
    Pater TJ, Grindel SI, Schmeling GJ, Wang M. Stability of unicortical locked fixation versus bicortical non-locked fixation for forearm fractures. Bone Res. 2014;2:14014.CrossRefGoogle Scholar
  15. 15.
    Sommer C, Babst R, Muller M, Hanson B. Locking compression plate loosening and plate breakage: a report of four cases. J Orthop Trauma. 2004;18(8):571–7.CrossRefGoogle Scholar
  16. 16.
    Fitzpatrick DC, Doornink J, Madey SM, Bottlang M. Relative stability of conventional and locked plating fixation in a model of the osteoporotic femoral diaphysis. Clin Biomech (Bristol, Avon). 2009;24(2):203–9.CrossRefGoogle Scholar
  17. 17.
    Hebert-Davies J, Laflamme GY, Rouleau D, Canet F, Sandman E, Li A, et al. A biomechanical study comparing polyaxial locking screw mechanisms. Injury. 2013;44(10):1358–62.CrossRefGoogle Scholar
  18. 18.
    Bottlang M, Doornink J, Byrd GD, Fitzpatrick DC, Madey SM. A nonlocking end screw can decrease fracture risk caused by locked plating in the osteoporotic diaphysis. J Bone Joint Surg Am. 2009;91(3):620–7.CrossRefGoogle Scholar
  19. 19.
    Dougherty PJ, Kim DG, Meisterling S, Wybo C, Yeni Y. Biomechanical comparison of bicortical versus unicortical screw placement of proximal tibia locking plates: a cadaveric model. J Orthop Trauma. 2008;22(6):399–403.CrossRefGoogle Scholar
  20. 20.
    Barei DP, O’Mara TJ, Taitsman LA, Dunbar RP, Nork SE. Frequency and fracture morphology of the posteromedial fragment in bicondylar tibial plateau fracture patterns. J Orthop Trauma. 2008;22(3):176–82.CrossRefGoogle Scholar
  21. 21.
    Yoo BJ, Beingessner DM, Barei DP. Stabilization of the posteromedial fragment in bicondylar tibial plateau fractures: a mechanical comparison of locking and nonlocking single and dual plating methods. J Trauma. 2010;69(1):148–55.CrossRefGoogle Scholar
  22. 22.
    Lenz M, Wahl D, Gueorguiev B, Jupiter JB, Perren SM. Concept of variable angle locking–evolution and mechanical evaluation of a recent technology. J Orthop Res. 2015;33(7):988–92.CrossRefGoogle Scholar
  23. 23.
    Kaab MJ, Frenk A, Schmeling A, Schaser K, Schutz M, Haas NP. Locked internal fixator: sensitivity of screw/plate stability to the correct insertion angle of the screw. J Orthop Trauma. 2004;18(8):483–7.CrossRefGoogle Scholar
  24. 24.
    Schneider K, Oh JK, Zderic I, Stoffel K, Richards RG, Wolf S, et al. What is the underlying mechanism for the failure mode observed in the proximal femoral locking compression plate? A biomechanical study. Injury. 2015;46(8):1483–90.CrossRefGoogle Scholar
  25. 25.
    Gueorguiev B, Lenz M. Why and how do locking plates fail? Injury. 2018;49(Suppl 1):S56–60.CrossRefGoogle Scholar
  26. 26.
    Schoch B, Hast MW, Mehta S, Namdari S. Not all polyaxial locking screw technologies are created equal: a systematic review of the literature. JBJS Rev. 2018;6(1):e6.CrossRefGoogle Scholar
  27. 27.
    Lenz M, Wahl D, Zderic I, Gueorguiev B, Jupiter JB, Perren SM. Head-locking durability of fixed and variable angle locking screws under repetitive loading. J Orthop Res. 2016;34(6):949–52.CrossRefGoogle Scholar
  28. 28.
    Tidwell JE, Roush EP, Ondeck CL, Kunselman AR, Reid JS, Lewis GS. The biomechanical cost of variable angle locking screws. Injury. 2016;47(8):1624–30.CrossRefGoogle Scholar
  29. 29.
    Tank JC, Schneider PS, Davis E, Galpin M, Prasarn ML, Choo AM, et al. Early mechanical failures of the synthes variable angle locking distal femur plate. J Orthop Trauma. 2016;30(1):e7–e11.CrossRefGoogle Scholar
  30. 30.
    Otto RJ, Moed BR, Bledsoe JG. Biomechanical comparison of polyaxial-type locking plates and a fixed-angle locking plate for internal fixation of distal femur fractures. J Orthop Trauma. 2009;23(9):645–52.CrossRefGoogle Scholar
  31. 31.
    Button G, Wolinsky P, Hak D. Failure of less invasive stabilization system plates in the distal femur: a report of four cases. J Orthop Trauma. 2004;18(8):565–70.CrossRefGoogle Scholar
  32. 32.
    Cole PA, Zlowodzki M, Kregor PJ. Treatment of proximal tibia fractures using the less invasive stabilization system: surgical experience and early clinical results in 77 fractures. J Orthop Trauma. 2004;18(8):528–35.CrossRefGoogle Scholar
  33. 33.
    Weight M, Collinge C. Early results of the less invasive stabilization system for mechanically unstable fractures of the distal femur (AO/OTA types A2, A3, C2, and C3). J Orthop Trauma. 2004;18(8):503–8.CrossRefGoogle Scholar
  34. 34.
    Bottlang M, Doornink J, Fitzpatrick DC, Madey SM. Far cortical locking can reduce stiffness of locked plating constructs while retaining construct strength. J Bone Joint Surg Am. 2009;91(8):1985–94.CrossRefGoogle Scholar
  35. 35.
    Richter H, Plecko M, Andermatt D, Frigg R, Kronen PW, Klein K, et al. Dynamization at the near cortex in locking plate osteosynthesis by means of dynamic locking screws: an experimental study of transverse tibial osteotomies in sheep. J Bone Joint Surg Am. 2015;97(3):208–15.CrossRefGoogle Scholar
  36. 36.
    Bottlang M, Lesser M, Koerber J, Doornink J, von Rechenberg B, Augat P, et al. Far cortical locking can improve healing of fractures stabilized with locking plates. J Bone Joint Surg Am. 2010;92(7):1652–60.CrossRefGoogle Scholar
  37. 37.
    Bottlang M, Feist F. Biomechanics of far cortical locking. J Orthop Trauma. 2011;25(Suppl 1):S21–8.CrossRefGoogle Scholar
  38. 38.
    Dobele S, Horn C, Eichhorn S, Buchholtz A, Lenich A, Burgkart R, et al. The dynamic locking screw (DLS) can increase interfragmentary motion on the near cortex of locked plating constructs by reducing the axial stiffness. Langenbeck’s Arch Surg. 2010;395(4):421–8.CrossRefGoogle Scholar
  39. 39.
    U.S. Food and Drug Administration. FDA Home. Medical Devices. Databases. Class 2 Device Recall Synthes 3.7 and 5.0mm Dynamic Locking Screwn (DLS). https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfres/res.cfm?id=122920. Accessed 4 Jul 2019.
  40. 40.
    Bottlang M, Tsai S, Bliven EK, von Rechenberg B, Klein K, Augat P, et al. Dynamic stabilization with active locking plates delivers faster, stronger, and more symmetric fracture-healing. J Bone Joint Surg Am. 2016;98(6):466–74.CrossRefGoogle Scholar
  41. 41.
    Henschel J, Tsai S, Fitzpatrick DC, Marsh JL, Madey SM, Bottlang M. Comparison of 4 Methods for dynamization of locking plates: differences in the amount and type of fracture motion. J Orthop Trauma. 2017;31(10):531–7.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of OrthopaedicsBanner University Medical Center Tucson, University of Arizona-Phoenix and TucsonTucsonUSA

Personalised recommendations