Nonlocking Plate Functions

  • Jonathan G. EastmanEmail author


Surgical stabilization of fractures with plate and screw constructs continues to be a common contemporary method of fracture fixation. Plate design has evolved significantly over the last century. While the modern plating armamentarium commonly includes anatomically precontoured locking plates with off-axis locking screw technology for many areas of the body, the basis of plate and screw fracture stabilization stems from nonlocking plate constructs. There are numerous different plate designs with varying shapes, sizes, and thicknesses. Regardless of the plate design, the function of the plate is determined by how the plate is applied by the surgeon to the specific fracture. The main functions that a plate can serve are compression, neutralization, buttress, tension band, and bridging. The purpose of this chapter is to describe and demonstrate each primary function possible by plate and screw constructs through both correct and incorrect clinical examples.


Nonlocking plating Compression Neutralization Buttress Tension band Bridge plating 


  1. 1.
    Uhthoff HK, Poitras P, Backman DS. Internal plate fixation of fractures: short history and recent developments. J Orthop Sci. 2006;11(2):118–26.CrossRefGoogle Scholar
  2. 2.
    Buckley R, Moran CG, Apivatthakakul T. AO principles of fracture management, Principles, vol. 1. 3rd ed. New York: Thieme; 2017.Google Scholar
  3. 3.
    Anderson LD, Sisk D, Tooms RE, Park WI 3rd. Compression-plate fixation in acute diaphyseal fractures of the radius and ulna. J Bone Joint Surg Am. 1975;57(3):287–97.CrossRefGoogle Scholar
  4. 4.
    Chapman MW, Gordon JE, Zissimos AG. Compression-plate fixation of acute fractures of the diaphyses of the radius and ulna. J Bone Joint Surg Am. 1989;71(2):159–69.CrossRefGoogle Scholar
  5. 5.
    Hadden WA, Reschaver R, Seggl W. Results of AO plate fixation of forearm shaft fractures in adults. Injury. 1982;15:448.Google Scholar
  6. 6.
    Hertel R, Pisan M, Lambert S, Ballmer FT. Plate osteosynthesis of diaphyseal fractures of the radius and ulna. Injury. 1996;27:545–8.CrossRefGoogle Scholar
  7. 7.
    Allende C, Vanoli F, Gentile L, Gutierrez N. Minimally invasive plate osteosynthesis in humerus nonunion after intramedullary nailing. Int Orthop. 2018;42(11):2685–9.CrossRefGoogle Scholar
  8. 8.
    Hakeos WM, Richards JE, Obremskey WT. Plate fixation of femoral nonunions over an intramedullary nail with autogenous bone grafting. J Orthop Trauma. 2011;25(2):84–9.CrossRefGoogle Scholar
  9. 9.
    Rupp M, Biehl C, Budak M, Thormann U, Heiss C, Alt V. Diaphyseal long bone nonunions – types, aetiology, economics, and treatment recommendations. Int Orthop. 2018;42(2):247–58.CrossRefGoogle Scholar
  10. 10.
    Patel R, Neu CP, Curtiss S, Fyhrie DP, Yoo B. Crutch weightbearing on comminuted humeral shaft fractures: a biomechanical comparison of large versus small fragment fixation for humeral shaft fractures. J Orthop Trauma. 2011;25(5):300–5.CrossRefGoogle Scholar
  11. 11.
    Lindvall EM, Sagi HC. Selective screw placement in forearm compression plating: results of 75 consecutive fractures stabilized with 4 cortices of screw fixation on either side of the fracture. J Orthop Trauma. 2006;20(3):157–62.CrossRefGoogle Scholar
  12. 12.
    Nauth A, McKee MD. Open reduction and internal fixation of both-bones forearm fractures. JBJS Essent Surg Tech. 2015;5(4):e28.CrossRefGoogle Scholar
  13. 13.
    Lucas JF, Lee MA, Eastman JG. Optimizing compression: comparing eccentric plate holes and external tensioning devices. Injury. 2016;47(7):1461–5.CrossRefGoogle Scholar
  14. 14.
    Virkus WV, Goldberg SH, Lorenz EP. A comparison of compressive force generation by plating and intramedullary nailing techniques in a transverse diaphyseal humerus fracture model. J Trauma. 2008;65(1):103–8.CrossRefGoogle Scholar
  15. 15.
    Perren SM. Evolution of the internal fixation of long bone fractures. The scientific basis of biological internal fixation: choosing a new balance between stability and biology. J Bone Joint Surg Br. 2002;84(8):1093–110.CrossRefGoogle Scholar
  16. 16.
    Schildhauer TA, Nork SE, Mills WJ, Henley MB. Extensor mechanism-sparing paratricipital posterior approach to the distal humerus. J Orthop Trauma. 2003;17(5):374–8.CrossRefGoogle Scholar
  17. 17.
    Gerwin M, Hotchkiss RN, Weiland AJ. Alternative operative exposures of the posterior aspect of the humeral diaphysis with reference to the radial nerve. J Bone Joint Surg Am. 1996;78(11):1690–5.CrossRefGoogle Scholar
  18. 18.
    Brunner CF, Weber BG. Anti-glide plate. In: Special techniques in internal fixation. Berlin/Heidelberg: Springer; 1982. p. 115–32.CrossRefGoogle Scholar
  19. 19.
    Wegner AM, Wolinsky PR, Robbins MA, Garcia TC, Maitra S, Amanatullah DF. Antiglide plating of vertical medial malleolus fractures provides stiffer initial fixation than bicortical or unicortical screw fixation. Clin Biomech (Bristol, Avon). 2016;31:29–32.CrossRefGoogle Scholar
  20. 20.
    Switaj PJ, Wetzel RJ, Jain NP, Weatherford BM, Ren Y, Zhang LQ, Merk BR. Comparison of modern locked plating and antiglide plating for fixation of osteoporotic distal fibular fractures. Foot Ankle Surg. 2016;22(3):158–63.CrossRefGoogle Scholar
  21. 21.
    Ratcliff JR, Werner FW, Green JK, Harley BJ. Medial buttress versus lateral locked plating in a cadvaver medial tibial plateau fracture model. J Orthop Trauma. 2007;21(7):444–8.CrossRefGoogle Scholar
  22. 22.
    Patel PB, Tejqani NC. The Hoffa fracture: coronal fracture of the femoral condyle a review of literature. J Orthop. 2018;15(2):726–31.CrossRefGoogle Scholar
  23. 23.
    Barei DP, O’Mara TJ, Taitsman LA, Denbar RP, Nork SE. Frequency and fracture morphology of the posteromedial fragment in bicondylar tibial plateau fracture patterns. J Orthop Trauma. 2008;22(3):176–82.CrossRefGoogle Scholar
  24. 24.
    Hommel GJ, Lobrano C, Ogden AL, Mukherjee DP, Anissian L, Marymont JV. A quantitative analysis of tension band plating of the femur diaphysis. Arch Orthop Trauma Surg. 2011;131(10):1325–30.CrossRefGoogle Scholar
  25. 25.
    Duckworth AD, Clement ND, White TO, Court-Brown CM, McQueen MM. Plate versus tension-band wire fixation for olecranon fractures: a prospective randomized trial. J Bone Joint Surg Am. 2017;99(15):1261–73.CrossRefGoogle Scholar
  26. 26.
    Zderic I, Stoffel K, Sommer C, Höntzsch D, Gueorguiev B. Biomechanical evaluation of the tension band wiring principle. A comparison between two different techniques for transverse patella fracture fixation. Injury. 2017;48(8):1749–57.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Orthopaedic Surgery, Davis Medical CenterUniversity of CaliforniaSacramentoUSA

Personalised recommendations