Advertisement

Biomechanical Principles of Fracture Healing

  • Sarah H. McBride-GagyiEmail author
  • Maureen E. Lynch
Chapter
  • 95 Downloads

Abstract

Osteogenic tissues are remarkably mechanosensitive during both growth and repair. Thus, it is important for a surgeon aiming to optimize bone regeneration to create an ideal mechanical environment with the surgical protocol, implants, and postsurgical weight-bearing they select. Here, we discuss the basics of mechanical strength from both the material and structural perspectives for fracture callus tissues and implant materials. After reviewing this chapter, the reader should be able to find characteristic points on a stress-strain curve and to categorize material properties (i.e., stiff vs. compliant, strong vs. weak, ductile vs. brittle). The following topics are also covered: anisotropy, fatigue failure, viscoelasticity, and stress concentrations.

Keywords

Stress Strain Stiffness Elasticity Anisotropy Fatigue Viscoelasticity Toughness Moments of inertia 

References

  1. 1.
    McBride SH, Silva MJ. Adaptive and injury response of bone to mechanical loading. Bonekey Osteovision. 2012;1:pii: 192.Google Scholar
  2. 2.
    Knothe Tate ML, Falls TD, McBride SH, Atit R, Knothe UR. Mechanical modulation of osteochondroprogenitor cell fate. Int J Biochem Cell Biol. 2008;40(12):2720–38.CrossRefGoogle Scholar
  3. 3.
    Chen J-H, Liu C, You L, Simmons CA. Boning up on Wolff’s Law: mechanical regulation of the cells that make and maintain bone. J Biomech. 2010;43(1):108–18.CrossRefGoogle Scholar
  4. 4.
    Glatt V, Evans CH, Tetsworth K. A concert between biology and biomechanics: the influence of the mechanical environment on bone healing. Front Physiol. 2017;7:678.  https://doi.org/10.3389/fphys.2016.00678.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Morgan EF, Gleason RE, Hayward LN, Leong PL, Palomares KTS. Mechanotransduction and fracture repair. J Bone Joint Surg Am. 2008;90(Suppl 1):25–30. Review.CrossRefGoogle Scholar
  6. 6.
    Morgan EF, Lei J. Toward clinical application and molecular understanding of the mechanobiology of bone healing. Clin Rev Bone Miner Metab. 2015;13(4):256–65.CrossRefGoogle Scholar
  7. 7.
    Cole JH, van der Meulen MCH. Whole bone mechanics and bone quality. Clin Orthop Relat Res. 2011;469(8):2139–49.CrossRefGoogle Scholar
  8. 8.
    Keaveny TM, Morgan EF, Yeh OC. Bone mechanics. In: Kutz M, editor. Standard handbook of biomedical engineering and design. New York: McGraw Hill Professional; 2003. Access Engineering. https://www.accessengineeringlibrary.com/content/book/9780071498388.Google Scholar
  9. 9.
    Karim L, Hussein AI, Morgan EF, Bouxsein ML. The mechanical behavior of bone. In: Marcus R, Feldman D, Dempster DW, Luckey M, Cauley JA, editors. Osteoporosis. 4th ed. San Diego: Academic; 2013. p. 431–52.CrossRefGoogle Scholar
  10. 10.
    Sharir A, Barak MM, Shahar R. Whole bone mechanics and mechanical testing. Vet J. 2008;177(1):8–17.CrossRefGoogle Scholar
  11. 11.
    Morgan EF, Unnikrisnan GU, Hussein AI. Bone mechanical properties in healthy and diseased states. Annu Rev Biomed Eng. 2018;20(1):119–43.CrossRefGoogle Scholar
  12. 12.
    Jepsen KJ, Silva MJ, Vashishth D, Guo XE, van der Meulen MC. Establishing biomechanical mechanisms in mouse models: practical guidelines for systematically evaluating phenotypic changes in the diaphyses of long bones. J Bone Miner Res. 2015;30(6):951–66.CrossRefGoogle Scholar
  13. 13.
    Avallone EA, Baumeister T III, editors. Marks’ standard handbook for mechanical engineers. 10th ed. New York: McGraw-Hill; 1996.Google Scholar
  14. 14.
    Roylance D. Stress-strain curves [internet]. MIT OpenCourseWare. http://ocw.mit.edu. Cambridge, MA: Massachusetts Institute of Technology; 2001. Available from: http://web.mit.edu/course/3/3.11/www/modules/ss.pdf. Accessed 18 Sept 2018.
  15. 15.
    Manjubala I, Liu Y, Epari DR, Roschger P, Schell H, Fratzl P, et al. Spatial and temporal variations of mechanical properties and mineral content of the external callus during bone healing. Bone. 2009;45(2):185–92.CrossRefGoogle Scholar
  16. 16.
    Leong PL, Morgan EF. Measurement of fracture callus material properties via nanoindentation. Acta Biomater. 2008;4(5):1569–75.CrossRefGoogle Scholar
  17. 17.
    Leong PL, Morgan EF. Correlations between indentation modulus and mineral density in bone-fracture calluses. Integr Comp Biol. 2009;49(1):59–68.CrossRefGoogle Scholar
  18. 18.
    Viguet-Carrin S, Garnero P, Delmas PD. The role of collagen in bone strength. Osteoporos Int. 2006;17(3):319–36.CrossRefGoogle Scholar
  19. 19.
    Garnero P. The contribution of collagen crosslinks to bone strength. Bonekey Rep. 2012;1:182.  https://doi.org/10.1038/bonekey.2012.182.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Bartel DL, Davy DT, Keaveny TM. Orthopaedic mechanics and design in musculoskeletal systems. Pearson/Prentice Hall: Upper Saddle River; 2006.Google Scholar
  21. 21.
    Currey J. The many adaptations of bone. J Biomech. 2003;36(10):1487–95.CrossRefGoogle Scholar
  22. 22.
    Thomopoulos S, Marquez JP, Weinberger B, Birman V, Genin GM. Collagen fiber orientation at the tendon to bone insertion and its influence on stress concentrations. J Biomech. 2006;39(10):1842–51.CrossRefGoogle Scholar
  23. 23.
    Mfoumou E, Tripette J, Blostein M, Cloutier G. Time-dependent hardening of blood clots quantitatively measured in vivo with shear-wave ultrasound imaging in a rabbit model of venous thrombosis. Thromb Res. 2014;133(2):265–71.CrossRefGoogle Scholar
  24. 24.
    Weisel JW. The mechanical properties of fibrin for basic scientists and clinicians. Biophys Chem. 2004;112(2–3):267–76.CrossRefGoogle Scholar
  25. 25.
    Silva MJ, Brodt MD, Wopenka B, Thomopoulos S, Williams D, Wassen MHM, et al. Decreased collagen organization and content are associated with reduced strength of demineralized and intact bone in the SAMP6 mouse. J Bone Miner Res. 2006;21(1):78–88.CrossRefGoogle Scholar
  26. 26.
    García-Rodríguez J, Martínez-Reina J. Elastic properties of woven bone: effect of mineral content and collagen fibrils orientation. Biomech Model Mechanobiol. 2017;16(1):159–72.CrossRefGoogle Scholar
  27. 27.
    Herman BC, Cardoso L, Majeska RJ, Jepsen KJ, Schaffler MB. Activation of bone remodeling after fatigue: differential response to linear microcracks and diffuse damage. Bone. 2010;47(4):766–72.CrossRefGoogle Scholar
  28. 28.
    Colopy SA, Benz-Dean J, Barrett JG, Sample SJ, Lu Y, Danova NA, et al. Response of the osteocyte syncytium adjacent to and distant from linear microcracks during adaptation to cyclic fatigue loading. Bone. 2004;35(4):881–91.CrossRefGoogle Scholar
  29. 29.
    Özkaya N, Leger D, Goldsheyder D, Nordin M. Mechanical properties of biological tissues. In: Fundamentals of biomechanics: equilibrium, motion, and deformation. 4th ed. Cham: Springer International; 2016. p. 361–83.Google Scholar
  30. 30.
    White AA, Panjabi MM, Southwick WO. The four biomechanical stages of fracture repair. J Bone Joint Surg Am. 1977;59(2):188–92.CrossRefGoogle Scholar
  31. 31.
    Silva MJ, Touhey DC. Bone formation after damaging in vivo fatigue loading results in recovery of whole-bone monotonic strength and increased fatigue life. J Orthop Res. 2007;25(2):252–61.CrossRefGoogle Scholar
  32. 32.
    Currey JD. Stress concentrations in bone. J Cell Sci. 1962;s3–103(61):111–33.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Orthopaedic SurgerySaint Louis UniversitySt. LouisUSA
  2. 2.Department of Mechanical EngineeringUniversity of Colorado BoulderBoulderUSA

Personalised recommendations