Advertisement

Helicobacter pylori Infection: When Should It Be Treated?

  • I. W. Fong
Chapter
  • 35 Downloads
Part of the Emerging Infectious Diseases of the 21st Century book series (EIDC)

Abstract

The discovery of Helicobacter pylori [formerly Campylobacter pylori] in 1982 had revolutionized the treatment and concept of the pathogenesis of peptic ulcer disease and gastric cancer. Phylogeographic and genetic studies have indicated that the bacteria have been present in humans for >50,000 years and the distribution reflect ancient migration patterns. H. pylori strains are distributed globally and the prevalence and incidence are greater in developing countries and lower socioeconomic strata of society. Humans are the main reservoir and transmission is by the fecal–oral route. The prevalence of H. pylori colonization in the global population has been estimated to be in 4.4 billion people or greater than half of the world’s population. The bacteria is considered the cause [or strongly associated] with duodenal ulcer [90%], gastric ulcer [50–80%], gastric cancer [60–90%], and mucosa-associated lymphoid tissue [MALT] lymphoma in most cases. However, most people with H. pylori colonization are asymptomatic and are colonized for many decades or indefinitely. The treatment of H. pylori infection has only been well established for peptic ulcer disease and early MALT, but many general practitioners and some gastroenterologists are treating patients with dyspepsia, gastroesophageal reflux symptoms, and asymptomatic infections with the same regimens designed for peptic ulcer disease. Widespread use of these antibiotic regimens maybe fueling increased antimicrobial resistance of H. pylori and enteric bacteria. This chapter reviews and discusses current concepts of H. pylori-associated diseases including pathogenesis, epidemiology, diagnosis, indications for treatment, therapeutic regimens, prevention of gastric cancer, and vaccine development.

Keywords

Peptic ulcer disease Dyspepsia Chronic gastritis Gastric cancer Screening Asymptomatic MALT Treatment regimens 

References

  1. 1.
    Moodley Y, Ling B, Bond RP et al (2012) Age of the association between Helicobacter pylori and man. PLoS Pathog 8:e1002693PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Falush D, Wirth T, Linz B et al (2005) Traces of human migration in Helicobacter pylori population. Science 299:1582–1585CrossRefGoogle Scholar
  3. 3.
    Montano V, Didelot X, Foll M et al (2015) Worldwide population structure, long-term demography, and local adaptation of Helicobacter pylori. Genetics 200:9447–9463CrossRefGoogle Scholar
  4. 4.
    Cover TL, Blaser MJ (2015) Helicobacter pylori and other Helicobacter species. In: Bennett JE, Dolan R, Blaser MJ (eds) Principles and practice of infectious diseases, 8th edn. Elsevier/Saunders, Philadelphia, pp 2494–2502Google Scholar
  5. 5.
    Hooi JK, Lai WY, Ng WK et al (2017) Global prevalence of Helicobacter pylori infections: systematic review and meta-analysis. Gastroenterology 153:420–429PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Leja M, Axon A, Brenner H (2016) Epidemiology of Helicobacter pylori infection. Helicobacter 21(Suppl.1):3–7PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Schwarz S, Morelli G, Kusecek B et al (2008) Horizontal versus familial transmission of Helicobacter pylori. PLoS Pathog 4:e1000180PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Bui D, Brown HE, Harris RB, Oren E (2016) Serologic evidence for fecal-oral transmission of Helicobacter pylori. Am J Trop Med Hyg 94:82–88PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Krueger WS, Hilborn ED, Converse RR, Wade TJ (2015) Environmental risk factors associated with Helicobacter pylori seroprevalence in the United States: a cross-sectional analysis of NHANES data. Epidemiol Infect 143:2520–2531PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Aziz RK, Khalifa MM, Sharaf RR (2015) Contaminated water as a source of Helicobacter pylori infection: a review. J Adv Res 6:539–547PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Weeks DL, Eskandari S, Scott DR, Sachs G (2000) A H+-gated urea channel: the link between Helicobacter pylori urease and gastric colonization. Science 287:482–485PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Schwartz JT, Allen LA (2006) Role of urease in megasome formation and Helicobacter pylori survival in macrophages. J Leukoc Biol 79:1214–1225PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Eaton KA, Suerbaum S, Joesnhans C, Krakowka S (1996) Colonization of gnotobiotic piglets by Helicobacter pylori deficient in two flagellin genes. Infect Immun 64:2445–2448PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Clyne M, Ocroinin T, Suerbaum S, Josenhans C, Drumm B (2000) Adherence of isogenic flagellum-negative mutants of Helicobacter pylori and Helicobacter mustelae to human and ferret gastric epithelial cells. Infect Immun 68:4335–4339PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Kao CY, Sheu BS, Wu JJ (2014) CsrA regulates Helicobacter pylori J99 motility and adhesion by controlling flagella formation. Helicobacter 190:443–454CrossRefGoogle Scholar
  16. 16.
    Ilver D, Arnqvist A, Ogren J et al (1998) Helicobacter pylori adhesion fucosylated histo-blood group antigen revealed by retagging. Science 279:373–377PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Mahdavi J, Sonden B, Hurtig M et al (2002) Helicobacter pylori SabA adhesion in persistent infection and chronic inflammation. Science 97:573–578CrossRefGoogle Scholar
  18. 18.
    Kao C-Y, Sheu B-S, Wu J-J (2016) Helicobacter pylori infection: an overview of bacterial virulence factors and pathogenesis. Biomed J 39:14–23PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Rezaeifar A, Eskandari-Nasab E, Moghadampour M et al (2013) The association of interleukin-18 promotor polymorphisms and serum levels with duodenal ulcer, and correlations with bacterial CagA and VacA virulence factors. Scand J Infect Dis 45:584–592PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Yamaoka Y, Kodama T, Guiterrez O, Kim JG, Kashima K, Graham DY (1999) Relationship between Helicobacter pylori iceA, CagA, and VacA status and clinical outcome studies in four different countries. J Clin Microbiol 37:2274–2279PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Argent RH, Kidd M, Owen RJ, Thomas RJ, Limb MC, Atherton JC (2004) Determinants and consequences of different levels of CagA is determined by variation in the tyrosine phosphorylation for clinical isolates of Helicobacter pylori. Gastroenterology 127:514–523PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Odenreit S, Puls J, Sedlmaier B et al (2000) Translocation of Helicobacter pylori CagA into gastric epithelial cells by type IV secretion. Science 287:1499–1500Google Scholar
  23. 23.
    Akazawa Y, Isomoto H, Matsushima K et al (2013) Endoplasmic reticulum stress contribute to Helicobacter pylori VacA induced apoptosis. PLoS One 8:e82322PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Hisatsune J, Nakayama M, Isomoto H et al (2008) Molecular characterization of Helicobacter pylori VacA induction of IL-8 in U937 cells reveals a prominent role for p38MAPK in activating transcription factor-2, cAMP response element binding protein, and NF-kappaB activation. J Immunol 180:5017–5027PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Gonzalez CA, Figueiredo C, Lic CB et al (2011) Helicobacter pylori cagA and vacA genotypes as predictors of progression of gastric preneoplastic lesions: a long-term follow-up in a high-risk area of Spain. Am J Gastroenterol 106:867–874PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Marshall BJ, Armstrong JA, McGeehie DB, Glancy RJ (1985) Attempt to fulfill Koch’s postulates for pyloric Campylobacter. Med J Aust 142:436–439PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Sobala GM, Crabtree JE, Dixon MF, Schorah CJ, Taylor JD, Rathbone BJ, Heatley RV, Axon AT (1991) Acute Helicobacter pylori infection: clinical features, local and systemic immune response, gastric mucosal histology, and gastric juice ascorbic acid concentrations. Gut 32:1415–1418PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Burkitt MD, Duckworth CA, Williams JM, Pritchard DM (2017) Helicobacter pylori-induced gastric pathology: insights from in vivo and ex vivo models. Dis Model Mech 10:89–104PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Li Z, Ma X, Chen J et al (2010) Epidemiology of peptic ulcer disease: endoscopic results of the systematic investigation of gastrointestinal disease in China. Am J Gastroenterol 105:2570–2577PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Groenen MJ, Kuipers EJ, Hansen BE, Ouwendijk RJ (2009) Incidence of duodenal ulcers and gastric ulcers in a Western population: back to where it started. Clin J Gastroenterol 23:604–608Google Scholar
  31. 31.
    McColl K, El-Omar EM, Gillen D (1997) Alterations in gastric physiology in Helicobacter pylori infection: causes of different disease or all epiphenomena? Ital J Gastroenerol 29:459–464Google Scholar
  32. 32.
    D’Elios MM, Manghetti M, Almerigogna F et al (1997) Different cytokine profile and antigen-specificity repertoire in Helicobacter pylori-specific T cell clones from the antrum of chronic gastritis patients with or without peptic ulcer. Eur J Immunol 27:1751–1755PubMedCrossRefGoogle Scholar
  33. 33.
    Van der Hulst RWM, Tytgat GNJ (1996) Helicobacter pylori and peptic ulcer disease. Scand J Gastroenterol 31(220(Suppl)):10CrossRefGoogle Scholar
  34. 34.
    Tsai HF, Hsu PN (2017) Modulation of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis by Helicobacter pylori in immune pathogenesis of gastric mucosal damage. J Microbiol Immunol Infect 50:4–9PubMedCrossRefGoogle Scholar
  35. 35.
    Weel JF, van der Hulst RW, Gerritis Y et al (1996) The interrelationship between cytotoxin-associated gene A, vacuoltating cytotoxin, and Helicobacter pylori-related diseases. J Infect Dis 173:1171–1175PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Ogura BK, Maeda S, Nakao M et al (2000) Virulence factors of Helicobacter pylori responsible for gastric diseases in Mongolian gerbil. J Exp Med 192:1601–1609PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Kaur B, Garg N, Sachdev A, Kumar B (2014) Effect of the oral intake of probiotic Pediococcus acidilacti BA28 on Helicobacter pylori causing peptic ulcer in C57BL/6 mice models. Appl Biochem Biotechnol 172:973–983PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Sheh A, Fox JG (2013) The role of the gastrointestinal microbiome in Helicobacter pylori pathogenesis. Gut Microbes 4:505–531PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Correa P, Haenszel W, Cuello C et al (1975) A model for gastric cancer epidemiology. Lancet 2:58–60PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Forman D, Webb P, Parsonnet J (1994) H. pylori and gastric cancer. Lancet 343:243–244PubMedCrossRefGoogle Scholar
  41. 41.
    Moss SF (2017) The clinical evidence linking Helicobacter pylori to gastric cancer. Cell Mol Gastroenterol Hepatol 3:183–191PubMedCrossRefGoogle Scholar
  42. 42.
    Koeppel M, Garcia-Alcalde F, Glowinski F, Schlaermann P, Meyer TF (2015) Helicobacter pylori infection causes characteristic DNA damage pattern in human cells. Cell Rep 11:1703–1713PubMedCrossRefGoogle Scholar
  43. 43.
    Wang K, Yuen ST, Xu J et al (2014) Whole-genome sequencing and comprehensive molecular profiling identify new driver mutation in gastric cancer. Nat Genet 46:573–582PubMedCrossRefGoogle Scholar
  44. 44.
    De Falco M, Lucariello A, Iaquinto S, Esposito V, Guerra G, De Luca A (2015) Molecular mechanisms of Helicobacter pylori pathogenesis. J Cell Physiol 230:1702–1707PubMedCrossRefGoogle Scholar
  45. 45.
    Backert S, Neddermann M, Maubach G, Naumann M (2016) Pathogenesis of Helicobacter pylori infection. Helicobacter 21(Suppl. 1):19–25PubMedCrossRefGoogle Scholar
  46. 46.
    Mocellin S, Verdi D, Pooley KA, Niotti D (2015) Genetic variation and gastric cancer risks: a field synopsis and meta-analysis. Gut 64:1209–1219PubMedCrossRefGoogle Scholar
  47. 47.
    Ying HY, Yu BW, Yang Z et al (2016) Interleukin-1B 31 C>T polymorphisms combined with Helicobacter pylori-modified gastric cancer susceptibility: evidence from 37 studies. J Cell Mol Med 20:526–536PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Zhuang W, Wu XT, Zhopu Y et al (2010) Interluekin 10-592 promoter polymorphisms associated with gastric cancer among Asians: a meta-analysis of epidemiological studies. Dig Dis Sci 55:1525–1532PubMedCrossRefGoogle Scholar
  49. 49.
    Person C, Canedo P, Machado JC, El-Omar EM, Forman D (2011) Polymorphisms in inflammatory response genes and their association with gastric cancer: a HuGE systematic review and meta-analyses. Am J Epidemiol 173:259–270CrossRefGoogle Scholar
  50. 50.
    Poh AR, O’Donoghue RJJ, Ernst M, Putocztki TL (2016) Mouse models for gastric cancer: matching models to biological questions. J Gastroenterol Hepatol 31:1257–1272PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Asenjo L, Gisbert JP (2007) Prevalence of Helicobacter pylori infection in gastric MALT lymphoma: a systematic review. Rev Esp Enferm Dig 99:398–404PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Khalil MO, Morton LM, Devasa SS, Check DP, Curtis RE, Weisenburger DD, Dores GM (2014) Incidence of marginal zone lymphoma in the United States, 2001–2009 with a focus on primary anatomic site. Br J Haematol 165:67–77PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Zucca E, Bertoni F, Roggero E et al (1998) Molecular analysis of the progression from Helicobacter pylori-associated chronic gastritis to mucosa-associated lymphoid-tissue lymphoma of the stomach. N Engl J Med 338:804–810PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Roeberck S, Madden L, Jin X et al (2011) Cleavage of NIK by the AP12-MALT1 fusion oncoprotein leads to noncanonical KF-kappa B activation. Science 331:468–472CrossRefGoogle Scholar
  55. 55.
    Diaconu S, Predescu A, Moldoveanu A, Pop CS, Fierbinteanu-Braticevici C (2017) Helicobacter pylori infection: old and new. J Med Life 10:112–117PubMedPubMedCentralGoogle Scholar
  56. 56.
    Hentschel E, Brandstatter G, Dragoisics B et al (1993) Effect of ranitidine and amoxil-plus metronidazole on eradication of Helicobacter pylori and the recurrence of duodenal ulcer. N Engl J Med 328:308–312PubMedCrossRefGoogle Scholar
  57. 57.
    Ford AC, Gurusamy KS, Delaney B, Forman D, Moayyedi P (2016) Eradication therapy for peptic ulcer disease in Helicobacter pylori-positive people. Cochrane Database Syst Rev 4:CD003840PubMedGoogle Scholar
  58. 58.
    Leung KE, Chan FK (2012) Helicobacter pylori infection and nonsteroidal anti-inflammatory drug use: eradication, acid-reducing therapy, or both? Clin Gastroenterol Hepatol 10:831–836CrossRefGoogle Scholar
  59. 59.
    Thung I, Vavinskaya V, Gupta S, Park JY, Crowe SE, Valasek MA (2016) Review article: the global emergence of Helicobacter pylori antibiotic resistance. Aliment Pharmacol Ther 43:514–533PubMedCrossRefGoogle Scholar
  60. 60.
    Mitui M, Patel A, Leos NK, Doren CD, Park JY (2014) Novel Helicobacter pylori sequencing test identifies high rate of clarithromycin resistance. Pediatr Gastroenterol Nutr 59:6–9CrossRefGoogle Scholar
  61. 61.
    Shiota S, Reddy R, Alsarraj A, El-Serag HB, Graham DY (2015) Antibiotic resistance of Helicobacter pylori among male United States veterans. Clin Gastroenterol Hepatol 13:1616–1624PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Kim N, Kim JM, Kim CH et al (2006) Institutional difference of antibiotic resistance of Helicobacter pylori strains in South Korea. J Clin Gastroenterol 40:683–687PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Ford AC, Marwaha A, Sood R et al (2015) Global prevalence of, and risk factors for, uninvestigated dyspepsia: a meta-analysis. Gut 64:1049–1057PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Moayyedi PM, Lacy BE, Andrews CN, Enns RA, Howden CW, Vakil N (2017) ACG and CAG clinical guideline: management of dyspepsia. Am J Gastroenterol 112:988–1013PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Du LJ, Chen B-R, Kim S, Shen JH, Dai N (2016) Helicobacter pylori eradication therapy for functional dyspepsia: systematic review and meta-analysis. World J Gastroenterol 22:3486–3495PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Zucca E, Bertoni F (2016) The spectrum of MALT lymphoma at different sites: biological and therapeutic relevance. Blood 127:2082–2092PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Leontiadis GI, Ford AC, Moayyedi P (2009) Helicobacter pylori infections. BMJ Clin Evid 10:0406Google Scholar
  68. 68.
    Nakamura S, Sugiyama T, Matsumoto T et al (2012) Long-term clinical outcome of gastric MALT lymphoma after eradication of Helicobacter pylori: a multicenter cohort follow-up study of 420 patients in Japan. Gut 61:507–513PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Wundisch T, Dieckhoff P, Greene B et al (2012) Second cancers and residual disease in patients treated for gastric mucosa-associated lymphoid tissue lymphoma by Helicobacter pylori eradication and followed for 10 years. Gastroenterology 143:936–942PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Ferreri AJM, Govi S, Ponzoni M (2013) The role of Helicobacter pylori eradication in the treatment of diffuse large B-cell and marginal zone lymphomas of the stomach. Curr Opin Oncol 25:470–479PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Ferreri AJ, Govi S, Raderer M et al (2012) Helicobacter pylori eradication as exclusive treatment for limited-stage gastric diffuse large B-cell lymphoma: results of a multicenter phase 2 trial. Blood 120:3858–3860PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Jung DH, Kim J-H, Chung HS, Park JC, Shin SK, Lee SK, Lee YC (2015) Helicobacter pylori eradication on the prevention of metrachronous lesions after endoscopic resection of gastric neoplasm: a meta-analysis. PLoS One 10:e0124725PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Lee YC, Chiang T-H, Chou C-K, Tu Y-K, Liao W-C, Wu M-S, Graham DY (2016) Association between Helicobacter pylori eradication and gastric cancer incidence: a systematic review and meta-analysis. Gastroenterology 150:1113–1124PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Choi IIJ, Kook M-C, Kim Y-II et al (2018) Helicobacter pylori therapy for the prevention of metachronous gastric cancer. N Engl J Med 378:1085–1095PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Bornschein J, Selgrad M, Warnecke M et al (2010) H. pylori infection is a key risk factor for proximal gastric cancer. Dig Dis Sci 55:3124–3131PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Abrams JA, Gonsalves L, Neugut AI (2013) Diverging trends in the incidence of reflux-related and Helicobacter pylori-related gastric cardia cancer. J Clin Gastroenterol 47:322–327PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Wong BC-Y, Lam SK, Wong WM et al (2004) Helicobacter pylori eradication to prevent gastric cancer in a high-risk region of China. A randomized controlled trial. JAMA 291:187–194PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Ma J-L, Zhang L, Brown LM et al (2012) Fifteen-year effects of Helicobacter pylori, garlic, and vitamin treatments on gastric cancer incidence and mortality. J Natl Cancer Inst 104:488–492PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Lee YC, Chen TH, Chiu HM et al (2013) The benefit of mass eradication of Helicobacter pylori infection: a cohort study of gastric cancer prevention. Gut 62:676–682PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Leung WK, Wong IOL, Cheung KS et al (2018) Effects of Helicobacter pylori treatment on incidence of gastric cancer in older individuals. Gastroenterology 155:67–75PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Ford AC, Forman D, Moayyedi P (2014) Helicobacter pylori eradication therapy to prevent gastric cancer in healthy asymptomatic infected individuals: systematic review and meta-analysis of randomized controlled trials. BMJ 348:g3174PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Queiroz DMM, Hrris PR, Sanderson IR et al (2013) Iron status and Helicobacter pylori infection in symptomatic children: an international multi-centered study. PLoS One 8:e68833PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Yuan W, Li Y, Yang K et al (2010) Iron deficiency anemia in Helicobacter pylori infection: meta-analysis of randomized controlled trials. Scand J Gastroenterol 45:665–676PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Qu X-H, Huang X-L, Xiong P et al (2010) Does Helicobacter pylori infection play a role in iron deficiency anemia? A met-analysis. World J Gastroenterol 16:886–896PubMedPubMedCentralGoogle Scholar
  85. 85.
    Goddard AF, James MW, McIntyre AS et al (2011) Guidelines for the management of iron deficiency anemia. Gut 60:1309–1316PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Stabler SP (2013) Vitamin B12 deficiency. N Engl J Med 368:2041–2042PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Sato R, Murakami K, Okimoto T et al (2011) Development of corpus atrophic gastritis may be associated with Helicobacter pylori-related idiopathic thrombocytopenic purpura. J Gastroenterol 46:991–997PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Neunert C, Lim W, Crowther M et al (2011) The American Society of Hematology 2011 evidence-based practice guideline for immune thrombocytopenia. Blood 117:4190–4207PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Provan D, Stasi R, Newland AC et al (2010) International consensus report on the investigation and management of primary immune thrombocytopenia. Blood 115:168–186PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Stasi R, Sarpatwari A, Segal JB et al (2009) Effects of eradication of Helicobacter pylori infection in patients with immune thrombocytopenic purpura: a systematic review. Blood 113:1231–1240PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Russo G, Miraglia V, Branciforte F et al (2011) Effect of eradication of Helicobacter pylori in children with chronic immune thrombocytopenia: a prospective, controlled, multicenter study. Pediatr Blood Cancer 56:273–278PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Li BZ, Threapleton DE, Wang JY et al (2015) Comparative effectiveness and tolerance of treatments for Helicobacter pylori: systematic review network meta-analysis. BMJ 351:h4052PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Chey WD, Leontiadis GI, Howden CW, Moss SF (2017) ACG clinical guideline: treatment of Helicobacter pylori infection. Am J Gastroenterol 112:212–238PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Yuan Y, Ford AC, Khan KJ et al (2013) Optimum duration of regimens for Helicobacter pylori eradication. Cochrane Database Syst Rev 12:CD008337Google Scholar
  95. 95.
    Malfertheiner P, Megraud F, O’Morain CA et al (2017) Management of Helicobacter pylori infection—the Maastricht V/Florence Consensus Report. Gut 66:6–30PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Luther J, Higgins PD, Schoenfeld PS et al (2010) Empiric quadruple vs. triple therapy for primary treatment of Helicobacter pylori infections: systematic review and meta-analysis of efficacy and tolerability. Am J Gastroenterol 105:65–73PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Fischbach L, Evans EL (2007) Meta-analysis: the effect of antibiotic resistance status on the efficacy of triple and quadruple first-line therapies for Helicobacter pylori. Aliment Pharmacol Ther 26:343–357PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Dore MP, Farina V, Cuccu M et al (2011) Twice a day bismuth-containing quadruple therapy for Helicobacter pylori eradication: a randomized trial of 10 and 14 days. Helicobacter 16:296–300CrossRefGoogle Scholar
  99. 99.
    Graham DY, Shiotani A (2012) Which therapy for helicobacter pylori infection? Gastroenterology 143:10–12PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Lee BH, Kim N, Hwang TJ et al (2010) Bismuth-containing quadruple therapy as second-line treatment for Helicobacter pylori infection: effect of treatment duration and antibiotic resistance on eradication rate in Korea. Helicobacter 15:38–45PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Laine L, Hunt R, El-Zimaity H et al (2003) Bismuth-based quadruple therapy using a single capsule of bismuth biskalcitrate, metronidazole, and tetracycline given with omeprazole versus omeprazole, amoxicillin, and clarithromycin for eradication of Helicobacter pylori in duodenal ulcer patients: a prospective, randomized, multicenter, North American trial. Am J Gastroenterol 98:562–567PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Delchier JC, Malfertheiner P, Theroff-Ekerdt R (2014) Use of a combination formulation of bismuth, metronidazole and tetracycline with omeprazole as a rescue therapy for eradication of Helicobacter pylori. Aliment Pharmacol Ther 40:171–177PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Gisbert JP, Calvert X (2012) Update on non-bismuth quadruple [concomitant] therapy for eradication of Helicobacter pylori. Clin Exp Gastroenterol 5:23–34PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Toros AB, Ince AT, Kesici B et al (2011) A new modified concomitant therapy for Helicobacter pylori eradication in Turkey. Helicobacter 16:225–228PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Lim JH, Lee DH, Choi C et al (2013) Clinical outcomes of two-week sequential and concomitant therapies for Helicobacter pylori eradication: a randomized pilot study. Helicobacter 18:180–186PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    McNicholl A, Molina-Infante J, Bermejo F et al (2014) Non-bismuth quadruple concomitant therapies in the eradication of Helicobacter pylori: standard vs. optimized [14 days, high dose PPI] regimens in clinical practice. Helicobacter 19:11CrossRefGoogle Scholar
  107. 107.
    Gatta L, Vakkil N, Vaira D et al (2013) Global eradication rates for Helicobacter pylori infection: systematic review and meta-analysis of sequential therapy. BMJ 347:f4587PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Wang B, Wang YH, Lv ZF et al (2015) Review: Efficacy and safety of hybrid therapy for Helicobacter pylori infections: a systematic review and meta-analysis. Helicobacter 20:79–88PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Emera MH, Elhawari SA, Yopusef S, Radwan MI, Abdel-Aziz HR (2015) Emerging role of probiotics in the management of Helicobacter pylori infection: histopathologic perspectives. Helicobacter 21:3–10CrossRefGoogle Scholar
  110. 110.
    Wang ZH, Gao QY, Fang JY (2013) Meta-analysis of the efficacy and safety of Lactobacillus-containing and Bifidobacterium-containing probiotic compound preparation in Helicobacter pylori eradication therapy. J Clin Gastroenterol 47:25–32PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Zhang MM, Qian W, Qin YYU, He J, Zhou YH (2015) Probiotics in Helicobacter pylori eradication therapy: a systematic review and meta-analysis. World J Gastroenterol 21:4345–4357PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Pan KF, Zhang L, Gerhard M et al (2016) A large randomized controlled intervention trial to prevent gastric cancer by eradication of Helicobacter pylori in Linqu County, China: baseline results and factors affecting the eradication. Gut 65:9–18PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Zeng M, Mao XH, Li JX et al (2015) The efficacy, safety, and immunogenicity of an oral recombinant Helicobacter pylori vaccine in children in China: a randomized, double-blind, placebo-controlled, phase 3 trial. Lancet 386:1457–1464PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Sutton P (2015) At last, vaccine-induced protection against Helicobacter pylori. Lancet 386:1424–1425PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Savoldi A, Carrara E, Graham DY, Conti M, Tacconelli E (2018) Prevalence of antibiotic resistance in Helicobacter pylori: a systematic review and meta-analysis in World Health Organization regions. Gastroenterology 155:1372–1382PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Chen Y, Blaser MJ (2008) Helicobacter pylori colonization is inversely associated with childhood Asthma. J Infect Dis 198:553–560PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • I. W. Fong
    • 1
  1. 1.St. Michael’s HospitalUniversity of TorontoTorontoCanada

Personalised recommendations