Dendroecological Potential of Juniperus deppeana in Northern Mexico

  • Julián Cerano-ParedesEmail author
  • Iván Molina-Pérez
  • Gerardo Esquivel-Arriaga
  • Rosalinda Cervantes-Martínez
  • José Villanueva-Díaz
  • Osvaldo Franco-Ramos
  • Jorge Méndez-González
  • Víctor Hugo Cambrón-Sandoval
  • Gabriel Fernando Cardoza-Martínez


The species Juniperus deppeana is widely distributed throughout the Sierra Madre Occidental, northern Mexico, and no studies have been conducted to determine its dendroclimatic potential. This study in intended to answer the following questions. Is it possible to date annual growth of J. deppeana and develop tree-ring series? What is the most important climate variable that limits its growth? Do its growth rings have the potential to reconstruct climatic variables? A total of 31 cross-sections were collected, 84% from standing dead trees and stumps and 16% from live trees. The samples were dated based on standard dendrochronological techniques. Of the samples collected (25 cross-sections), 80% were dated giving a total of 51 growth series. Significant correlation (r = 0.51, p < 0.01) among series was determined. Chronologies of the total ring width, earlywood, and latewood were generated for a period of 223 years (1793–2015). The chronologies of total ring width and earlywood constitute an excellent proxy for reconstructing the variability of yearly and seasonal precipitation (January–July, r = 0.56; p < 0.01). Moreover, high temperatures from January through April showed greater relation with the ring width (r = − 0.38; p < 0.01). Ring growth of J. deppeana possesses the quality to be used as an indirect source for reconstruction of climatic variability and ecological studies in northern Mexico.


Annual rings Missing rings False rings Dendroecological potential Southwestern Chihuahua 



We thank all the personnel that contributed to this study in the field and laboratory. This research was funded by the CONAFOR-CONACYT fund, registration number CONAFOR-2014, C01-234547.


  1. Adams RP, Schwarzbach AE (2006) Infraspecific adjustments in Juniperus deppeana (cupressaceae). Phytologia 88(3):227–232Google Scholar
  2. Arreola-Ortiz MR, González-Elizondo M, Návar-Cháidez JJ (2010) Dendrocronología de Pseudotsuga menziesii ( Mirb.) Franco de la Sierra Madre Oriental en Nuevo León, México. Madera Bosques 16(1):71–84CrossRefGoogle Scholar
  3. Borja A, Machuca R, Fuentes-Salinas M et al (2010) Caracterización tecnológica de la madera de Juniperus flaccida var. Poblana Martínez. Rev Chapingo Ser Cie XVI(2):261–280. Scholar
  4. Bradley RS (1999) Paleoclimatology. Reconstructin climates of the Quaternary. Second Edition. Academic Press, USA, p 613Google Scholar
  5. Briffa K (1995) Interpreting high-resolution proxy climate data - The example of dendroclimatology. In: Analysis of climate variability, applications of statistical techniques. Springer Nueva York, pp 77–94Google Scholar
  6. Cardoza-Martínez GF, Cerano-Paredes J, Villanueva-Díaz J et al (2014) Reconstrucción de la precipitación anual para la región oriental del estado de Tlaxcala. Revista Mexicana de Ciencias Forestales 5(2):110–127Google Scholar
  7. Cerano-Paredes J, Villanueva-Díaz J, Arreola-Avila JG et al (2009) Reconstrucción de 350 años de precipitación para el suroeste de Chihuahua, México. Madera Bosques 15(2):27–44CrossRefGoogle Scholar
  8. Cerano-Paredes J, Villanueva-Díaz J, Valdez-Cepeda RD et al (2011a) Sequías reconstruidas en los útimos 600 años para el noreste de México. Rev Mex Cienc Agríc 2(2):235–249Google Scholar
  9. Cerano-Paredes J, Villanueva-Díaz J, Valdez-Cepeda RD et al (2011b) Variabilidad histórica de la precipitación reconstruida con anillos de árboles para el Sureste de Coahuila. Revista Mexicana Ciencias Forestales 3(4):33–48CrossRefGoogle Scholar
  10. Cerano-Paredes J, Villanueva-Díaz J, Cervantes-Martínez R et al (2014) Reconstrucción de precipitación invierno-primavera para el Parque Nacional Pico de Tancítaro, Michoacán. Investigaciones Geograficas 83:41–54. Scholar
  11. Chávez-Gándara MP, Cerano-Paredes J, Nájera-Luna JA et al (2017) Reconstrucción de la precipitación invierno- primavera con base en anillos de crecimiento de árboles para la región de San Dimas, Durango, México. Bosque 38(2):387–399. Scholar
  12. Cleaveland MK, Stahle DW, Therrell MD et al (2003) Tree-ring reconstructed winter precipitation and tropical teleconnections in Durango, Mexico. Climatic Change 59(1):369–388. Scholar
  13. Constante-García V, Villanueva-Díaz J, Cerano-Paredes J et al (2009) Dendrocronología de Pinus cembroides Zucc. y Reconstrucción de Precipitación, estacional para el sureste de Coahuila. Revista Ciencia Forestal en México 34(106):17–39Google Scholar
  14. Cook ER, Kairiukstis LA (2013) Methods of dendrochronology: applications in the environmental sciences. Kluwer Academic Publishers, Dordrecht. The Netherlands.Google Scholar
  15. Díaz-Ramírez B, Villanueva-Díaz J, Cerano-Paredes J (2016) Reconstrucción de la precipitación estacional con anillos de crecimiento para la región hidrológica Presidio-San Pedro. Madera Bosques 22(1):111–123Google Scholar
  16. Earl RA, Bash DL (1996) Response of alligator juniper (Juniperus deppeana Pinaceae) to historic environmental variability in south central New Mexico. Southwest Nat 41(3):227–238Google Scholar
  17. Florescano EM, Cervera JS, Arias DPG (1980) Las sequías en México: historia, características y efectos. Comercio Exterior 30(7):747–757Google Scholar
  18. Fritts HC (1976) Tree rings and climate. Academic, San Diego, p 567Google Scholar
  19. García E (2004) Climas (clasificación de Koppen, modificado por García). Instituto de Geografía, Universidad Nacional Autónoma de México 6(1):0Google Scholar
  20. Grissino-Mayer HD (1993) An updated list of species used in tree-ring research. Tree-Ring Bull 53:17–43Google Scholar
  21. Hoerling M, Eischeid J, Perlwitz J et al (2012) On the increased frequency of Mediterranean drought. J Clim 25(6):2146–2161CrossRefGoogle Scholar
  22. Holmes RL (1983) Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bull 43:69–78Google Scholar
  23. Instituto Mexicano de Tecnología del Agua IMTA (2009) Extractor rápido de información climatológica III (ERIC). Software. Jiutepec, Morelos, MéxicoGoogle Scholar
  24. Instituto Nacional de Estadística, Geografía e Informatica INEGI (2017) Carta edafológica escala 1:20 000. Numero de carta G1301Google Scholar
  25. Intergovernmental Panel on Climate Change IPCC (2013) Climate Change: the physical science basis; Contribution of Working Group I to the IPCC Fifth Assessment Report of the IPCC. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (Eds.), Cambridge University Press: Cambridge, UK; New York, NY, USA.Google Scholar
  26. Irby CM, Fulé PZ, Yocom LL et al (2013) Dendrochronological reconstruction of long-term precipitation patterns in Basaseachi National Park, Chihuahua, Mexico. Madera Bosques 19(1):93–105Google Scholar
  27. Johnsen TN (1959) Longevity of stored juniper seeds. Ecology 40:487–488CrossRefGoogle Scholar
  28. Johnsen TN (1962) One seed juniper invasion of northern Arizona grasslands. Ecol Monogr 32:187–207CrossRefGoogle Scholar
  29. Kozlowski TT, Pallardy SG (1997) Growth control in woody plants. Academic Press, San DiegoGoogle Scholar
  30. Lara A (2000) Importancia científica, protección legal y uso destructivo de los bosques de alerce (Fitzroya cupressoides): una contradicción que debe resolverse. Bosque Nativo 27:3–13Google Scholar
  31. Lara A, Villalba R (1993) A 3,620-year temperature record from Fitzroya cuppressoides tree rings in South America. Science 260:1104–1106CrossRefGoogle Scholar
  32. Leavitt SW, Long A (1982) Stable carbon isotopes as a potential supplemental tool in dendrochronology. Tree-Ring Bull 42:49–55Google Scholar
  33. Leverenz JW (1981) Photosynthesis and transpiration in large forest-grown Douglas-fir: diurnal variation. Can J Bot 59(3):349–356CrossRefGoogle Scholar
  34. Martín-Benito D, Cherubini P, Del Río M (2008) Growth response to climate and drought in Pinus nigra Arn. trees of different crown classes. Trees 22:363–373. Scholar
  35. Myers-Smith IH, Hallinger M, Blok D et al (2015) Methods for measuring arctic and alpine shrub growth: A review. Earth-Sci Rev 140:1–13CrossRefGoogle Scholar
  36. Neira E (1995) Desarrollo de cronologías para Alerce (Fitzroya cupressoides (Molina) Johnston) en las cordilleras de la Costa y de los Andes. Facultad de Ciencias Forestales, Universidad Austral de Chile, p 112Google Scholar
  37. Pompa-García M, Cerano-Paredes J, Fule PZ (2013) Variation in radial growth of Pinus cooperi in response to climatic signals across an elevational gradient. Dendrochronologia 31:198–204. Scholar
  38. Robinson WJ, Evans R (1980) A microcomputer-based tree-ring measuring system. Tree-Ring Bull 40:59–64Google Scholar
  39. Schweingruber FH (1996) Tree rings and environment: dendroecology. Paul Haupt, Berne. AG BernGoogle Scholar
  40. Seager R, Ting M, Davis M et al (2009) Mexican drought: an observational modeling and tree ring study of variability and climate change. Atmósfera 22(1):1–31Google Scholar
  41. Seiler KP, Gat J (2007) Groundwater recharge from run-off, infiltration and percolation. Springer Dordrecht, Paises BajosCrossRefGoogle Scholar
  42. Speer JH (2010) Fundamentals of Tree-Ring Research. University of Arizona Press, Tucson, EUAGoogle Scholar
  43. Stahle DW, Cook ER, Villanueva-Diaz J et al (2009) Early 21st-century drought in Mexico. Eos 90(11):89–100. Scholar
  44. Stahle DW, Burnette DJ, Villanueva-Díaz J et al (2012) Pacific and Atlantic influences in Mesoamerican over the past millennium. Clim Dynam 39:1431–1446CrossRefGoogle Scholar
  45. Stahle DW, Cook ER, Burnette DJ et al (2016) The Mexican Drought Atlas: Tree-ring reconstructions of the soil moisture balance during the late pre-Hispanic, colonial, and modern eras. Quat Sci Rev 149:34–60. Scholar
  46. Stat Soft Inc (2011) Statistica for Windows (Computer Program Manual). StatSoft, Inc., TulsaGoogle Scholar
  47. Stokes MA, Smiley TL (1968) An introduction to tree-ring dating. University of Chicago Press, ChicagoGoogle Scholar
  48. Valero-Padilla J (2004) Estudio taxonómico y distribucional de los mamíferos del bosque fragmentado de Juniperus, del ejido San Juan y Puentes Aramberri, Nuevo León, México. Universidad Autónoma de Nuevo León, p 65Google Scholar
  49. Villalba R (1990) Climatic fluctuations in Northern Patagonia during the last 1000 years as inferred from tree-ring records. Quat Res 34(3):346–360. Scholar
  50. Villalba R, Leiva JC, Rubulis S et al (1990) Climate, tree rings and glacier fluctuations in the Frías valley, Río Negro, Argentina. Arct Alp Res 22(3):150–174CrossRefGoogle Scholar
  51. Villalba R, Lara A, Boninsegna JA et al (2003) Large-scale temperature changes across the southern Andes: 20th-century variations in the context of the past 400 years. Clim Chang 59:177–232CrossRefGoogle Scholar
  52. Villanueva-Díaz J, Fulé PZ, Cerano-Paredes J et al (2009) Reconstrucción de la precipitación estacional para el barlovento de la Sierra Madre Occidental con anillos de crecimiento de Pseudotsuga menziesii (Mirb.) Franco. Revista Ciencia Forestal en México 34(105):39–71Google Scholar
  53. Villanueva-Díaz J, Cerano-Paredes J, Fulé PZ et al (2014) Cuatro siglos de variabilidad hidroclimática en el noroeste de Chihuahua, México, reconstruida con anillos de árboles. Investigaciones Geograficas. Boletín del Instituto de Geografía 87:141–153. Scholar
  54. Villanueva-Díaz J, Cerano-Paredes J, Olivares-Bañuelos NC et al (2015) Respuesta climática del ciprés (Hesperocyparis guadalupensis) en Isla Guadalupe, Baja California, México. Madera Bosques 21(3):149–160Google Scholar
  55. Villanueva-Díaz J, Vázquez-Selem L, Gómez-Guerrero A et al (2016) Potencial dendrocronológico de Juniperus monticola Martínez en el Monte Tláloc. México Rev Fitotec Mex 39(2):175–185Google Scholar
  56. Wigley TM, Briffa KR, Jones PD (1984) On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J Clim Appl Meteorol 23(2):201–213.<0201:OTAVOC>2.0.CO;2CrossRefGoogle Scholar
  57. Zavala-García JA (2003) Caracterización de la roya del enebro (Juniperus spp.) en la sierra de Arteaga Coahuila. Departamento de Parasitología, Universidad Autónoma Agraria Antonio Narro, Saltillo, Coahuila, México. No. SD 397. J8. Z38Google Scholar
  58. Ziaco E, Biondi F (2016) Tree growth, cambial phenology, and wood anatomy of limber pine at a Great Basin (USA) mountain observatory. Trees 30(5):1507–1152CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Julián Cerano-Paredes
    • 1
    Email author
  • Iván Molina-Pérez
    • 1
  • Gerardo Esquivel-Arriaga
    • 1
  • Rosalinda Cervantes-Martínez
    • 1
  • José Villanueva-Díaz
    • 1
  • Osvaldo Franco-Ramos
    • 2
  • Jorge Méndez-González
    • 3
  • Víctor Hugo Cambrón-Sandoval
    • 4
  • Gabriel Fernando Cardoza-Martínez
    • 5
  1. 1.INIFAP CENID-RASPA, km. 6,5 Margen Derecha del Canal SacramentoGómez Palacio, DurangoMexico
  2. 2.Instituto de Geografía, Universidad Nacional Autónoma de México, Ciudad UniversitariaCoyoacán, MexicoMexico
  3. 3.Universidad Autónoma Agraria Antonio NarroDepartamento Forestal, Calzada Antonio NarroBuenavista, SaltilloMexico
  4. 4.Universidad Autónoma de Querétaro, Facultad de Ciencias Naturales. Av. de las Ciencias s/ndelegación Santa Rosa JureguiJuriquilla, QuerétaroMexico
  5. 5.Universidad Juárez del Estado de Durango, Facultad de Ciencias BiológicasAvenida Universidad S/N, Fraccionamiento FiladelfiaGómez Palacio, DurangoMexico

Personalised recommendations