Advertisement

How Past and Future Climate and Drought Drive Radial-Growth Variability of Three Tree Species in a Bolivian Tropical Dry Forest

  • J. Julio CamareroEmail author
  • Hooz A. Mendivelso
  • Raúl Sánchez-Salguero
Chapter
  • 32 Downloads

Abstract

Seasonally, dry tropical forests (SDTFs) are among the most diverse and threatened biomes in America. Several tree species coexist in these forests but their long-term growth responses to climate are unknown, and this is needed to make growth forecasts as a function of climate scenarios. We investigated the responses to climate, drought and ocean-atmosphere patterns of three tree species (Acosmium cardenasii H.S. Irwin & Arroyo, Centrolobium microchaete (Mart. ex Benth.) H.C. de Lima ex G.P. Lewis and Zeyheria tuberculosa (Vell.) Bureau coexisting in a Bolivian dry tropical forest. Species chronologies of ring-width indices were related to temperature, precipitation, drought indices and sea temperatures. A growth model was also used to forecast growth variability. C. microchaete and A. cardenasii presented similar year-to-year growth variability. Cool and wet conditions enhanced growth. Shorter droughts constrained more growth of C. microchaete and A. cardenasii, whilst longer droughts negatively impacted Z. tuberculosa. These different growth responses to climate and drought contribute to explain the coexistence of tree species in SDTFs. The growth patterns of the study species are valuable climate proxies for Bolivia. Forecasted warmer conditions after the 2050s will differently affect the growth variability of these species depending on their responses to climate and drought.

Keywords

Acosmium cardenasii Centrolobium microchaete Chiquitano forest Climate change scenarios Drought Zeyheria tuberculosa 

Notes

Acknowledgments

We thank colleagues at the Instituto Boliviano de Investigación Forestal (IBIF) for their support, particularly V. Vroomans and M. Toledo (now director of the “Museo de Historia Natural Noel Kempff Mercado”), and INPA Co. staff (P. Roosenboom, G. Urbano) for allowing the field sampling. This research was funded by the project “Análisis retrospectivos mediante dendrocronología para profundizar en la ecología y mejorar la gestión de los bosques tropicales secos (Dentropicas)” financed by BBVA Foundation.

References

  1. Aceituno P (1988) On the functioning of the southern oscillation in the south American sector part I: surface climate. Mon Weath Rev 116:505–524.  https://doi.org/10.1175/1520-0493(1988)116<0505:OTFOTS>2.0.CO;2CrossRefGoogle Scholar
  2. Alfaro-Sánchez R, Muller-Landau HC, Wright SJ et al (2017) Growth and reproduction respond differently to climate in three Neotropical tree species. Oecologia 184:531–541.  https://doi.org/10.1007/s00442-017-3879-3CrossRefPubMedGoogle Scholar
  3. Barton K (2012) MuMIn: Multi-model inference R package version 177. Retrieved from https://cran.r-project.org/web/packages/MuMIn/index.html
  4. Borchert R (1994) Soil and stem water storage determine phenology and distribution of tropical dry forest trees. Ecology 75:1437–1449.  https://doi.org/10.2307/1937467CrossRefGoogle Scholar
  5. Borchert R (1999) Climatic periodicity phenology and cambium activity in tropical dry forest trees. IAWA J 20:239–247CrossRefGoogle Scholar
  6. Bräuning A, Volland-Voigt F, Burchardt I et al (2009) Climatic control of radial growth of Cedrela montana in a humid mountain rainforest in southern Ecuador. Erdkunde 63:337–345CrossRefGoogle Scholar
  7. Brienen RJW, Zuidema PA (2005) Relating tree growth to rainfall in Bolivian rain forests: a test for six species using tree ring analysis. Oecologia 146:1–12.  https://doi.org/10.1007/s00442-005-0160-yCrossRefPubMedGoogle Scholar
  8. Brienen RJW, Lebrija-Trejos E, Zuidema PA et al (2010) Climate-growth analysis for a Mexican dry forest tree shows strong impact of sea surface temperatures and predicts future growth declines. Glob Ch Biol 16:2001–2012.  https://doi.org/10.1111/j.1365-2486.2009.02059.xCrossRefGoogle Scholar
  9. Brienen RJW, Schöngart J, Zuidema PA (2016) Tree rings in the tropics: insights into the ecology and climate sensitivity of tropical trees. In: Goldstein G, Santiago LS (eds) Tropical tree physiology. Springer, Cham, pp 439–461CrossRefGoogle Scholar
  10. Briffa KR, Jones PD (1990) Basic chronology statistics and assessment. In: Cook ER, Kairiukstis LA (eds) Methods of dendrochronology: applications in the environmental sciences. Kluwer, Dordrecht, pp 137–152Google Scholar
  11. Bullock SH, Mooney HA, Medina E (1995) Seasonally dry tropical forest. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  12. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New YorkGoogle Scholar
  13. Clark DB, Clark DA, Oberbauer SF (2010) Annual wood production in a tropical rain forest in NE Costa Rica linked to climatic variation but not to increasing CO2. Glob Ch Biol 16:747–759.  https://doi.org/10.1111/j.1365-2486.2009.02004.xCrossRefGoogle Scholar
  14. Cook ER (1985) A time series analysis approach to tree ring standardization [PhD thesis]. Univ. Arizona, TucsonGoogle Scholar
  15. Cook ER, Kairiukstis LA (1990) Methods of dendrochronology: applications in the environmental science. Kluwer, DordrechtCrossRefGoogle Scholar
  16. Cook ER, Krusic P (2007) ARSTAN 44 A Tree-ring standardization program based on detrending and autoregressive time series modeling with interactive graphics https://www.ldeocolumbiaedu/tree-ring-laboratory/resources/software. Accessed 23-08-19
  17. Devisscher T, Anderson LO, Aragão LEOC et al (2016) Increased wildfire risk driven by climate and development interactions in the Bolivian Chiquitania Southern Amazonia. PLoS One 11:e0161323CrossRefGoogle Scholar
  18. Dirzo R, Young HS, Mooney HA et al (2011) Seasonally dry tropical forest: ecology and conservation. Island Press, Washington, DCCrossRefGoogle Scholar
  19. Enquist BJ, Leffler AJ (2001) Long-term tree ring chronologies from sympatric tropical dry-forest trees: individualistic responses to climatic variation. J Trop Ecol 17:41–60.  https://doi.org/10.1017/S0266467401001031CrossRefGoogle Scholar
  20. Espinosa CI, Camarero JJ, Gusmán AA (2018) Site-dependent growth responses to climate in two major tree species from tropical dry forests of Southwest Ecuador. Dendrochronologia 52:11–19.  https://doi.org/10.1016/j.dendro.2018.09.004CrossRefGoogle Scholar
  21. FAO-JRC (2012) Global forest land-use change 1990–2005. Food and Agriculture Organization (FAO) of the United Nations, European Commission Joint Research Centre (JRC), RomeGoogle Scholar
  22. Fritts HC (2001) Tree rings and climate. The Blackburn Press, CaldwellGoogle Scholar
  23. García-Cervigón AI, Camarero JJ, Espinosa CI (2017) Intra-annual stem increment patterns and climatic responses in five tree species from an Ecuadorian tropical dry forest. Trees 31:1057–1067.  https://doi.org/10.1007/s00468-017-1530-xCrossRefGoogle Scholar
  24. Goldstein G, Andrade JL, Meinzer FC et al (1998) Stem water storage and diurnal patterns of water use in tropical forest canopy trees. Plant Cell Environ 21:397–406.  https://doi.org/10.1046/j.1365-3040.1998.00273.xCrossRefGoogle Scholar
  25. Harris I, Jones PD, Osborn TJ et al (2014) Updated high-resolution grids of monthly climatic observations – the CRU TS310 dataset. Int J Climatol 34:623–642.  https://doi.org/10.1002/joc.3711CrossRefGoogle Scholar
  26. Holmes RL (1983) Computer-assisted quality control in tree ring dating and measurement. Tree Ring Bull 43:69–78Google Scholar
  27. IPCC- Intergovernmental Panel on Climate Change (2013) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  28. Janzen DH (1988) Tropical dry forest: the most endangered major tropical ecosystem. In: Wilson EO (ed) Biodiversity. National Academy Press, Washington, DC, pp 130–137Google Scholar
  29. Killeen TJ, Jardim A, Mamani F et al (1998) Diversity, composition and structure of a tropical semideciduous forest in the Chiquitanía region of Santa Cruz Bolivia. J Trop Ecol 14:803–827.  https://doi.org/10.1017/S0266467498000583CrossRefGoogle Scholar
  30. Levitus S, Antonov JI, Boyer TP et al (2012) World ocean heat content and thermosteric sea level change (0–2000 m) 1955–2010. Geophys Res Lett 39:10603.  https://doi.org/10.1029/2012GL051106CrossRefGoogle Scholar
  31. López L, Villalba R (2011) Climate influences on the radial growth of Centrolobium microchaete a valuable timber species from the tropical dry forests in Bolivia. Biotropica 43:41–49.  https://doi.org/10.1111/j.1744-7429.2010.00653.xCrossRefGoogle Scholar
  32. López BC, Sabaté S, Gracia CA et al (2005) Wood anatomy description of annual rings and responses to ENSO events of Prosopis pallida HBK a wide-spread woody plant of arid and semi-arid lands of Latin America. J Arid Environ 61:541–554.  https://doi.org/10.1016/j.jaridenv.2004.10.008CrossRefGoogle Scholar
  33. López L, Stahle D, Villalba R et al (2017) Tree ring reconstructed rainfall over the southern Amazon Basin. Geophys Res Lett 44:7410–7418.  https://doi.org/10.1002/2017GL073363CrossRefGoogle Scholar
  34. López L, Rodríguez-Catón M, Villalba R (2019) Convergence in growth responses of tropical trees to climate driven by water stress. Ecography 42:1899.  https://doi.org/10.1111/ecog.04296CrossRefGoogle Scholar
  35. Lugo AE, Gonzalez-Liboy JA, Cintron B et al (1978) Structure productivity and transpiration of a subtropical dry forest in Puerto Rico. Biotropica 10:278–291.  https://doi.org/10.2307/2387680CrossRefGoogle Scholar
  36. Malhi Y, Gardner TA, Goldsmith GR et al (2014) Tropical forests in the Anthropocene. Ann Rev Env Resour 39:125–159.  https://doi.org/10.1146/annurev-environ-030713-155141CrossRefGoogle Scholar
  37. Markesteijn L, Poorter L, Bongers F et al (2011) Hydraulics and life history of tropical dry forest tree species: coordination of species’ drought and shade tolerance. New Phytol 191:480–495.  https://doi.org/10.1111/j.1469-8137.2011.03708.xCrossRefPubMedGoogle Scholar
  38. Mendivelso HA, Camarero JJ, Royo Obregón O et al (2013) Differential growth responses to water balance of coexisting deciduous tree species are linked to wood density in a Bolivian tropical dry forest. PLoS One 8:e73855.  https://doi.org/10.1371/journal.pone.0073855CrossRefPubMedPubMedCentralGoogle Scholar
  39. Mendivelso HA, Camarero JJ, Gutiérrez E et al (2014) Time-dependent effects of climate and drought on tree growth in a Neotropical dry forest: short-term tolerance vs long-term sensitivity. Agric For Meteorol 188:13–23.  https://doi.org/10.1016/j.agrformet.2013.12.010CrossRefGoogle Scholar
  40. Mendivelso HA, Camarero JJ, Gutiérrez E (2016a) Dendrocronología en bosques neotropicales secos: métodos avances y aplicaciones. Ecosistemas 25:66–75CrossRefGoogle Scholar
  41. Mendivelso HA, Camarero JJ, Gutiérrez E et al (2016b) Climatic influences on leaf phenology xylogenesis and radial stem changes at hourly to monthly scales in two tropical dry forests. Agric For Meteorol 216:20–36.  https://doi.org/10.1016/j.agrformet.2015.09.014CrossRefGoogle Scholar
  42. Moreno A, Hasenauer H (2015) Spatial downscaling of European climate data. Int J Climatol 36:1444–1458.  https://doi.org/10.1002/joc.4436CrossRefGoogle Scholar
  43. Mostacedo B (2007) Natural regeneration of canopy trees in a tropical dry forest in Bolivia [PhD thesis]. Univ. Florida, GainesvilleGoogle Scholar
  44. Mostacedo B, Villegas Z, Licona JC et al (2009) Ecología y Silvicultura de los Principales Bosques Tropicales de Bolivia. Instituto Boliviano de Investigación Forestal, Santa CruzGoogle Scholar
  45. Murphy PG, Lugo AE (1986) Ecology of tropical dry forest. Annu Rev Ecol Syst 17:67–88.  https://doi.org/10.1146/annurev.es.17.110186.000435CrossRefGoogle Scholar
  46. Navarro G, Maldonado M (2002) Geografía ecológica de Bolivia: vegetación y ambientes acuáticos. Fundación Simón I Patiño, CochabambaGoogle Scholar
  47. Paredes-Villanueva K, Sánchez-Salguero R, Manzanedo RD et al (2013) Growth rate and climatic response of Machaerium scleroxylon in a dry tropical forest in Southeastern Santa Cruz Bolivia. Tree-Ring Res 69:63–79.  https://doi.org/10.3959/1536-1098-69.2.63CrossRefGoogle Scholar
  48. Pennington RT, Lavin M, Oliveira-Filho AT (2009) Woody plant diversity evolution and ecology in the tropics: perspectives from seasonally dry tropical forests. Annu Rev Ecol Evol Syst 40:437–457.  https://doi.org/10.1146/annurev.ecolsys.110308.120327CrossRefGoogle Scholar
  49. Pinheiro J, Bates D, DebRoy S et al (2016) nlme: linear and nonlinear mixed effects models. R package version 3.1-141. http://cran.r-project.org/web/packages/nlme/index.html. Accessed 01.09.19
  50. Pirie MD, Klitgaard BB, Pennington RT (2009) Revision and biogeography of Centrolobium (Leguminosae-Papilionoideae). Syst Bot 34:345–359.  https://doi.org/10.1600/036364409788606262CrossRefGoogle Scholar
  51. Pucha-Cofrep D, Peters T, Bräuning A (2015) Wet season precipitation during the past century reconstructed from tree-rings of a tropical dry forest in Southern Ecuador. Glob Planet Chang 133:65–78.  https://doi.org/10.1016/j.gloplacha.2015.08.003CrossRefGoogle Scholar
  52. Pulla S, Suresh HS, Dattaraja HS et al (2017) Multidimensional tree niches in a tropical dry forest. Ecology 98:1334–1348.  https://doi.org/10.1002/ecy.1788CrossRefPubMedGoogle Scholar
  53. R Core Team (2019) R: a language and environment for statistical computing, version 3.6.1. R Foundation for Statistical Computing, Vienna. http://www.R-project.org. Accessed 01.09.19
  54. Ramírez JA, del Valle JI (2011) Paleoclima de La Guajira, Colombia según los anillos de crecimiento de Capparis odoratissima (Capparidaceae). Rev Biol Trop 59:1389–1405PubMedGoogle Scholar
  55. Rodríguez R, Mabresa A, Luckman B et al (2005) “El Niño” events recorded in dry-forest species of the lowlands of Northwest Peru. Dendrochronologia 22:181–186.  https://doi.org/10.1016/j.dendro.2005.05.002CrossRefGoogle Scholar
  56. Ronchail J (1995) Variabilidad interanual de las precipitaciones en Bolivia. Bull Inst Fr Études Andin 24:369–378Google Scholar
  57. Rozendaal DMA, Zuidema PA (2011) Dendroecology in the tropics: a review. Trees 25:3–16.  https://doi.org/10.1007/s00468-010-0480-3CrossRefGoogle Scholar
  58. Sánchez-Salguero R, Camarero JJ, Gutiérrez E et al (2017a) Assessing forest vulnerability to climate warming using a process-based model of tree growth: bad prospects for rear-edges. Glob Chang Biol 23:2705–2719.  https://doi.org/10.1111/gcb.13541CrossRefPubMedGoogle Scholar
  59. Sánchez-Salguero R, Camarero JJ, Carrer M et al (2017b) Climate extremes and predicted warming threaten Mediterranean Holocene firs forests refugia. PNAS 114:E10142–E10150.  https://doi.org/10.1073/pnas.1708109114CrossRefPubMedGoogle Scholar
  60. Schöngart J, Bräuning A, Maioli AC et al (2017) Dendroecological studies in the neotropics: history status and future challenges. In: Amoroso MM, Daniels LD, Baker PJ, Camarero JJ (eds) Dendroecology: tree-ting analyses applied to ecological studies. Springer, Switzerland, pp 35–73CrossRefGoogle Scholar
  61. Seiler C, Hutjes RW, Kavat P (2013) Climate variability and trends in Bolivia. J Appl Meteorol Climatol 52:130–146.  https://doi.org/10.1175/JAMC-D-12-0105.1CrossRefGoogle Scholar
  62. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. B Am Meteorol Soc 93:485–498.  https://doi.org/10.1175/BAMS-D-11-00094.1CrossRefGoogle Scholar
  63. Tolwinski-Ward SE, Evans MN, Hughes MK et al (2011) An efficient forward model of the climate controls on interannual variation in tree-ring width. Clim Dyn 36:2419–2439.  https://doi.org/10.1007/s00382-010-0945-5CrossRefGoogle Scholar
  64. Tolwinski-Ward SE, Anchukaitis KJ, Evans MN (2013) Bayesian parameter estimation and interpretation for an intermediate model of tree-ring width. Clim Past 9:1481–1493.  https://doi.org/10.5194/cp-9-1481-2013CrossRefGoogle Scholar
  65. Vicente-Serrano SM, Beguería S, López-Moreno JI (2010) A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. J Clim 23:1696–1718.  https://doi.org/10.1175/2009JCLI2909.1CrossRefGoogle Scholar
  66. Villegas Z, Peña-Claros M, Mostacedo B et al (2009) Silvicultural treatments enhance growth rates of future crop trees in a tropical dry forest. For Ecol Manag 258:971–977.  https://doi.org/10.1016/j.foreco.2008.10.031CrossRefGoogle Scholar
  67. Volland-Voigt F, Bräuning A, Ganzhi O et al (2011) Radial stem variations of Tabebuia chrysantha (Bignoniaceae) in different tropical forest ecosystems of southern Ecuador. Trees 25:39–48.  https://doi.org/10.1007/s00468-010-0461-6CrossRefGoogle Scholar
  68. Vuille M, Franquist E, Garreaud R et al (2015) Impact of the global warming hiatus on Andean temperature. J Geophys Res Atmos 16:3745–3757.  https://doi.org/10.1002/2015JD023126CrossRefGoogle Scholar
  69. Wells N, Goddard S, Hayes MJ (2004) A self-calibrating Palmer Drought Severity Index. J Clim 17:2335–2351.  https://doi.org/10.1175/1520-0442(2004)017<2335:ASPDSI>2.0.CO;2CrossRefGoogle Scholar
  70. Wigley TML, Briffa KR, Jones PD (1984) On the average value of correlated time series with applications in dendroclimatology and hydrometeorology. J Clim Appl Meteorol 23:201–213.  https://doi.org/10.1175/1520-0450(1984)023<0201:OTAVOC>2.0.CO;2CrossRefGoogle Scholar
  71. Worbes M (1995) How to measure growth dynamics in tropical trees a review. IAWA J 16:337–351.  https://doi.org/10.1163/22941932-90001424CrossRefGoogle Scholar
  72. Zhou X, Fu Y, Zhou L et al (2013) An imperative need for global change research in tropical forests. Tree Physiol 33:903–912.  https://doi.org/10.1093/treephys/tpt064CrossRefPubMedGoogle Scholar
  73. Zuidema PA, Brienen RJ, Schöngart J (2012) Tropical forest warming: looking backwards for more insights. Trends Ecol Evol 27:193–194.  https://doi.org/10.1016/j.tree.2011.12.007CrossRefPubMedGoogle Scholar
  74. Zuidema PA, Baker PJ, Groenendijk P et al (2013) Tropical forests and global change: filling knowledge gaps. Trends Plant Sci 18:413–419.  https://doi.org/10.1016/j.tplants.2013.05.006CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Instituto Pirenaico de Ecología (IPE-CSIC)ZaragozaSpain
  2. 2.Grupo Ecología de Organismos (GEO-UPTC), Universidad Pedagógica y Tecnológica de Colombia, Sede TunjaTunjaColombia
  3. 3.Depto. Sistemas Físicos, Químicos y NaturalesUniversidad Pablo de OlavideSevillaSpain

Personalised recommendations