Advertisement

Dendroecological Studies with Cedrela odorata L., Northeastern Brazil

  • Claudio Sergio Lisi
  • Mariana Alves Pagotto
  • Claudio Roberto AnholettoJr.
  • Francisco Carvalho NogueiraJr.
  • Helberson Lima Santos
  • Clayane Matos Costa
  • Ítallo Romany Nunes Menezes
  • Fidel Alejandro Roig Juñet
  • Mario Tommasiello Filho
Chapter
  • 35 Downloads

Abstract

Northeastern Brazil is home to the Caatinga Forest, characterized as a Tropical Dry Forest (TDF), and the Dense Ombrophilous Forest (the Atlantic Forest) predominates near the coast. In the Caatinga, the climate is semiarid, with <600 mm of mean annual precipitation and a mean annual air temperature of 27 °C ± 6 °C. The precipitation presents a seasonal pattern, with a rainy season concentrated in the first half of the year and at least 6 months of dry season, with volumes <50 mm/month. The climate in the Atlantic Forest has a milder air temperature and a mean rainfall of 1450 mm/year. In both regions the tree species, Cedrela odorata L., widely studied in dendrochronology, presents populations in farms, with several individuals per hectare. In recent decades, 10 chronologies of C. odorata have been produced and compared to precipitation and other environmental factors, and their competition with lianas and support of the herbivorous process has been noted. This chapter presents the potential of C. odorata for dendrochronology in Northeastern Brazil; the anatomy of true rings with marginal parenchyma associated with vessels differed from the false rings by the absence of vessels. Absent rings were also observed. Nine chronologies had correlations above the critical level of 0.51 (0.51–0.79) and sensitivity between 0.547 and 0.771. The correlation between all series (rbt) of all chronologies had values between 0.27 and 0.68 and expressed population signal (EPS) above 0.85 (between 0.88 and 0.98). In both biomes, several populations of C. odorata have resulted in climate-related chronologies that showed the seasonal rainfall from May to July induces metabolism and growth rings formation. We also presented the methodology used for tropical dendroecology studies and the relationship between plant growth and environmental conditions.

Keywords

Growth rings Conservation Caatinga Tropical dendrochronology 

Notes

Acknowledgements

We are thankful for the support of the CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) and Fapitec (Fundação de Apoio à Pesquisa e a Inovação Tecnológica do Estado de Sergipe) edicts UNIVERSAL/CNPq N° 14/2011, FAPITEC/SE/FUNTEC/CNPq N° 04/2011, and UNIVERSAL– MCTI/CNPq N° 14/2014. We also thank the other team members of the UFS, ESALQ, and IANIGLA laboratories that contributed during these years to carry out these studies.

References

  1. Alvares CA, Stape JL, Sentelhas PC et al (2013) Köppen’s climate classification map for Brazil. Meteorol Z 22:711–728.  https://doi.org/10.1127/0941-2948/2013/0507CrossRefGoogle Scholar
  2. Alves JJA (2007) Geoecologia da caatinga no semi-árido do nordeste brasileiro. Climatologia e Estudos de Paisagens 2(1):58–71Google Scholar
  3. Alves JJA (2008) Biogeografia. João Pessoa: Editora Fotograf. 108pGoogle Scholar
  4. Amaral VFM (2006) Multiplicação in vitro de Cedrela odorata. Dissertation, Universidade Federal de Santa MariaGoogle Scholar
  5. Andreacci F, Botosso PC, Galvão F (2014) Sinais climáticos em anéis de crescimento de Cedrela fissilis em diferentes tipologias de florestas ombrófilas do sul do Brasil. Floresta 44(2):323–332CrossRefGoogle Scholar
  6. Anholetto Junior CR (2013) Dendroecologia e composição isotópica (δ13C) dos anéis de crescimento de árvores de Cedrela odorata, Meliaceae, na Caatinga e Mata Atlântica do Estado de Sergipe, Brasil. PHD Tesis Escola Superior de Agricultura “Luiz de Queiroz”Google Scholar
  7. Anholetto CR (2013) Dendroecologia e composição isotópica (δ13C) dos anéis de crescimento de árvores de Cedrela odorata, Meliaceae, na Caatinga e Mata Atlântica do estado de Sergipe, Brasil. Dissertation, Esalq.  https://doi.org/10.11606/D.11.2013.tde-30102013-105715
  8. Baker JCA, Hunt SFP, Clerici SJ et al (2015) Oxygen isotopes in tree rings show good coherence between species and sites in Bolivia. Global Planet Change 133:298–308.  https://doi.org/10.1016/j.gloplacha.2015.09.008CrossRefGoogle Scholar
  9. Baker JCA, Santos GM, Gloor M et al (2017) Does Cedrela always form annual rings? Testing ring periodicity across South America using radiocarbon dating. Trees 31(6):1999–2009.  https://doi.org/10.1007/s00468-017-1604-9CrossRefPubMedGoogle Scholar
  10. Ballantyne AP, Baker PA, Chambers JQ et al (2011) Regional differences in South American monsoon precipitation inferred from the growth and isotopic composition of tropical trees. Earth Interact 15(5):1–35.  https://doi.org/10.1175/2010EI277.1CrossRefGoogle Scholar
  11. Becerra-Montalvo V, Zevallos-Pollito P (2014) Determinación del turno de corta de Cedrela odorata L., Retrophyllum rospigliosii Pilger y Prumnopitys harmsiana Pilger a través del estudio dendrocronológico en San Ignacio, región Cajamarca Perú. Ceprosimad 2(2):33–47Google Scholar
  12. Blasing TJ, Solomon AS, Duvick DN (1984) Response functions revisited. Tree-Ring Bull 44:1–17Google Scholar
  13. Boninsegna JA, Villalba R, Amarilla L et al (1989) Studies on tree rings, growth-rates and age-size relationships of tropical tree species in Missiones, Argentina. IAWA Bull 10:161–169.  https://doi.org/10.1163/22941932-90000484CrossRefGoogle Scholar
  14. Botosso PC, Vetter RE, Tomazello M (2000) Periodicidade e taxa de crescimento de árvores de cedro (Cedrela odorata L., Meliaceae), jacareúba (Calophyllum angulare A.C. Smith, Clusiaceae) e muirapiranga (Eperua bijiga Mart. ex Benth, Leg. Caesalpinioideae) de floresta de terra firme, em Manaus-AM. In: Roig FA (ed) Dendrocronología en América Latina. Ediunic, Mendoza, pp 357–380Google Scholar
  15. Brandes AFN, Lisi CS, Barros CF (2010) Dendrochronology of lianas of the Leguminosae family from the Atlantic Forest, Brazil. Trees 25(1):133–144.  https://doi.org/10.1007/s00468-010-0529-3CrossRefGoogle Scholar
  16. Bräuning A, Volland-Voigt F, Burchardt I et al (2009) Climatic control of radial growth of Cedrela montana in a humid mountain rainforest in southern Ecuador. Erdkunde 63:337–345.  https://doi.org/10.3112/erdkunde.2009.04.04CrossRefGoogle Scholar
  17. Brienen RJW, Zuidema PA (2005) Relating tree growth to rainfall in Bolivian rain forests: a test for six species using tree ring analysis. Oecologia 146:1–12.  https://doi.org/10.1007/s00442-005-0160-yCrossRefPubMedGoogle Scholar
  18. Brienen RJW, Zuidema PA (2006a) Lifetime growth patterns and ages of Bolivian rain forest trees obtained by tree ring analysis. J Ecol 94:481–493.  https://doi.org/10.1111/j.1365-2745.2005.01080.xCrossRefGoogle Scholar
  19. Brienen RJW, Zuidema PA (2006b) The use of tree rings in tropical forest management: projecting timber yields of four Bolivian tree species. For Ecol Manage 226:256–267.  https://doi.org/10.1016/j.foreco.2006.01.038CrossRefGoogle Scholar
  20. Brienen RJW, Helle G, Pons TL et al (2012) Oxygen isotopes in tree rings are a good proxy for Amazon precipitation and El Niño-Southern Oscillation variability. PNAS 109(42):16957–16962.  https://doi.org/10.1073/pnas.1205977109CrossRefPubMedGoogle Scholar
  21. Brienen RJW, Gloor E, Clerici S et al (2017) Tree height strongly affects estimates of water-use efficiency responses to climate and CO2 using isotopes. Nat Commun 8(288):110.  https://doi.org/10.1038/s41467-017-00225-zCrossRefGoogle Scholar
  22. Briffa KR, Jones PD (1990) Basic chronology statistics and assessment. In: Methods of dendrochronology: applications in the environmental sciences. Kluwer Academic Publishers, DordrechtGoogle Scholar
  23. Burger LM, Richter HG (1991) Anatomia da madeira. Editora Nobel, São PauloGoogle Scholar
  24. Cardoso DS (2014) Caracterização anatômica da madeira e potencial dendrocronológico de Schinopsis brasiliensis Engl. (Anarcadiaceae) na caatinga sergipana. Dissertation, Universidade Federal de SergipeGoogle Scholar
  25. Castro CSS (2003) Tamanho da área de vida e padrão de uso do espaço em grupos de saguis Callitrix jacchus (Linnaeus) (Primates Callitrichidae). Rev Bras Zool 20(1):91–96CrossRefGoogle Scholar
  26. Castro VRC, Tomazello M, Surdi PG (2014) Avaliação do perfil radial do lenho de árvores de Pinus (Pinus caribaea var. hondurensis Barr. et Golf.) por densitometria de raios X. Sci For 42(103):353–360Google Scholar
  27. Chalk L (1983) Growth rings. In: Metcalfe CR, Chalk L (eds) Anatomy of dicotyledons. Oxford: Claredon Press, pp 250–265Google Scholar
  28. Cook ER, Peters K (1981) The smoothing spline: a new approach to standardizing forest interior tree-ring with series for dendroclimatic studies. Tree-Ring Bull 41:45–53Google Scholar
  29. Cook ER (1985) A time series analysis approach to tree-rings standardization. The University of Arizona, TucsonGoogle Scholar
  30. Cook ER, Kairiukstis LA (1990) Methods of dendrochronology. Springer Netherlands, DordrechtCrossRefGoogle Scholar
  31. Cordeiro JMP, Oliveira AG (2010) Levantamento fitogeográfico em trecho de Caatinga hipoxerófita – Sítio Canafístula, Sertãozinho-Paraíba, Brasil. OKARA: Geografia em debate 4(1–2):54–65Google Scholar
  32. Dávila N, Honorio E, Baker T et al (2008) Fichas de identificación de espécies maderables de Loreto- Peru. Instituto de Investigaciones de La Amazônia Peruana, pp 12–13Google Scholar
  33. Détienne P (1989) Appearence and periodicity of growth rings in some tropical woods. IAWA Bull 10:123–132.  https://doi.org/10.1163/22941932-90000480CrossRefGoogle Scholar
  34. Dünisch O, Bauch J, Gasparotto L (2002) Formation of increment zones and intraannual growth dynamics in the xylem of Swietenia macrophylla, Carapa guianensis, and Cedrela odorata (Meliaceae). IAWA J 23(2):101–119.  https://doi.org/10.1163/22941932-90000292CrossRefGoogle Scholar
  35. Dünisch O, Montoia VR, Bauch J (2003) Dendroecological investigations on Swietenia macrophylla King and Cedrela odorata L. (Meliaceae) in the central Amazon. Trees 17:244–250CrossRefGoogle Scholar
  36. Dünisch O (2005) Influence of the El-Niño southern oscillation on cambial growth of Cedrela fissilis Vell in tropical and subtropical Brazil. J Appl Bot Food Qual 79(1):5–11Google Scholar
  37. Espinoza MJP, Guillen GJI, Morales MS et al (2014) Potencialidad de Cedrela odorata (Meliaceae) para estudios dendrocronológicos en la selva central del Perú. Rev Biol Trop 62(2):783–793CrossRefGoogle Scholar
  38. Ferreira AG, Mello NGS (2005) Principais sistemas atmosféricos atuantes sobre a região nordeste do Brasil e a influência dos oceanos Pacífico e Atlântico no clima da região. Revista Brasileira de Climatologia 1:15–28.  https://doi.org/10.5380/abclima.v1i1.25215CrossRefGoogle Scholar
  39. Ferreira ATB, Tomazello M (2009) Caracterização dos anéis de crescimento de árvores de Pinus caribaea var. hondurensis Barr. et Golf. Por densitometria de raios X. Scientia Forestalis 37(83):287–298Google Scholar
  40. Ferreira GB (2012) Análise dendroclimatológica do cedro (Cedrela fissilis L. Meliaaceae) para reconstrução do cenário ambiental recente da cidade de São Paulo, SP. Dissertation, Universidade de São Paulo.  https://doi.org/10.11606/D.41.2012.tde-23072012-143643
  41. Gentry AH (1991) The distribution and evolution of climbing plants. In: Putz FE, Mooney HA (eds) The biology of vines. Cambridge University Press, CambridgeGoogle Scholar
  42. Granato-Souza D, Stahle DW, Barbosa AC et al (2018) Tree rings and rainfall in the equatorial Amazon. Climate Dynam 5:1–13.  https://doi.org/10.1007/s00382-018-4227-yCrossRefGoogle Scholar
  43. Holmes RL (1983) Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bull 43:69–78Google Scholar
  44. Iawa Committee (1989) Iawa list of microscopic features for hardwood identification. IAWA Bull New Ser 10(3):219–332CrossRefGoogle Scholar
  45. Jacomine PKT (2008–2009) A nova classificação brasileira de solos. In: Anais da Academia Pernambucana de Ciência Agronômica, vol 5/6, pp 161–179Google Scholar
  46. Janzen DH (1988) Tropical dry forests, the mosts endangerous major tropical ecosystem. In: Wilson EO (ed) Biodiversity. National Academy Press, Washington, DC.Google Scholar
  47. Köhl M, Neupane PR, Lotfiomran N (2017) The impact of tree age on biomass growth and carbon accumulation capacity: a retrospective analysis using tree ring data of three tropical tree species grown in natural forests of Suriname. PLoS One 1:17.  https://doi.org/10.1371/journal.pone.0181187CrossRefGoogle Scholar
  48. Larson PR (1994) The vascular cambium: development and structure. Springer, BerlinCrossRefGoogle Scholar
  49. Lisi CS, Tomazello-Filho M, Botosso PC et al (2008) Tree-ring formation, radial increment periodicity, and phenology of tree species from a seasonal semi-deciduous forest in southeast Brazil. IAWA J 29:189–207.  https://doi.org/10.1163/22941932-90000179CrossRefGoogle Scholar
  50. Lobão MS (2011) Dendrocronologia, fenologia, atividade cambial e qualidade do lenho de árvores de Cedrela odorata L., Cedrela fissilis Vell. e Schizolobium parahyba var. amazonicum Hub. ex Ducke, no estado do Acre, Brasil. PHD Tesis Escola Superior de Agricultura “Luiz de Queiroz”Google Scholar
  51. Lobão MS, Ortega GP, Amaral E et al (2016) Análise de similaridade das árvores de Cedrela sp. sob diferentes condições de crescimento no leste do estado do Acre, Brasil. Sci For 44(109):231–239.  https://doi.org/10.18671/scifor.v44n109.22CrossRefGoogle Scholar
  52. Loiola MIB, Roque AA, Oliveira ACP (2012) Caatinga: vegetação do semiárido brasileiro. Ecologia 4:14–19Google Scholar
  53. Lorenzi H (2009) Árvores brasileiras: manual de identificação e cultivo de plantas arbóreas nativas do Brasil, vol 2. Instituto Plantarum, Nova OdessaGoogle Scholar
  54. Maia GN (2012) Caatinga: árvores e arbustos e suas utilidades, vol 2. Printcolor Gráfica e Editora, FortalezaGoogle Scholar
  55. Marcati CR, Angyalossi V, Evert RF (2006) Seasonal variation in wood formation of Cedrela fissilis (Meliaceae). IAWA J 27(2):199–211.  https://doi.org/10.1163/22941932-90000149CrossRefGoogle Scholar
  56. Mariano Neto B (2001) Ecologia e imaginário: memória cultural, natureza e submundialização. Editora Universitária/FPB, João PessoaGoogle Scholar
  57. Paredes-Villanueva K, López L, Cerrillo RMN (2016) Regional chronologies of Cedrela fissilis and Cedrela angustifolia in tree forest types and their relation to climate. Trees 30:1581–1593.  https://doi.org/10.1007/s00468-016-1391-8CrossRefGoogle Scholar
  58. Pennington TD (1981) Meliaceae. Flora Neotrop (New York Botanical Garden) 28:359–368Google Scholar
  59. Polge H (1970) The use of X-ray densitometric methods in dendrochronology. Tree-Ring Bull 30:1–10Google Scholar
  60. Quintek Measurement Systems (1999) QMS tree ring analyzer model QTRS-01X. Users Guide, KnoxvilleGoogle Scholar
  61. Rauber RC (2010) Dendroecologia do cedro Cedrela fissilis Vell. (Meliaceae) em um ecótono de florestas subtropicais montanas no Brasil. Dissertation, UfrgslGoogle Scholar
  62. Ribeiro FE, Siqueira ER (2001) Recursos genéticos vegetais da Mata Atlântica de Sergipe. In: Siqueira ER, Ribeiro FE (eds) Mata Atlântica de Sergipe. Embrapa Tabuleiros Costeiros, AracajuGoogle Scholar
  63. Rosa SA (2008) Modelos de crescimento de quatro espécies madeireiras de várzea alta da Amazônia Central por meio de métodos dendrocronológicos. Dissertation, InpaGoogle Scholar
  64. Roweder C (2011) Germinação de sementes e desenvolvimento de plântulas de Cedro (Cedrella odorata L. – MELIACEAE) e Mogno (Swietenia macrophylla King – MELIACEAE) em diferentes condições de luminosidade, substratos e recipientes. Dissertation, UfacGoogle Scholar
  65. Sampaio EVSB (2010) Caraterização do Bioma Caatinga – características e potencialidades. In: Gariglio MA, Sampaio EVSB, Cestaro LA, Kageyama PY (eds) Uso sustentável e conservação dos recursos florestais da Caatinga. Serviço Florestal Brasileiro, BrasíliaGoogle Scholar
  66. Schweingruber FH, Fritts HC, Braker OU et al (1978) The x-ray technique as applied to dendroclimatology. Tree-Ring Bull 38:61–91Google Scholar
  67. Serviço Florestal Brasileiro (2017) Inventário florestal nacional: Sergipe: principais resultados/Serviço Florestal Brasileiro. MMAGoogle Scholar
  68. Surdi PG, Bortoletto Júnior G, Castro VR et al (2014) Perfil de densidade do lenho utilizando métodos radiográficos. Sci For 42(102):229–236Google Scholar
  69. Tomazello M, Botosso PC, Lisi CS (2000) Potencialidade da família Meliaceae para dendrocronologia em regiões tropicais e subtropicais. In: Roig FA (ed) Dendrocronología en América Latina. EDIUNC, MendozaGoogle Scholar
  70. Tomazello M, Botosso PC, Lisi CS et al (2001) Cedrela angustifolia Ses. et Moc. ex DC., Meliaceae: potential species for tropical endrochronology. Paleobotanist 50:47–53Google Scholar
  71. Tomazello M, Brazolin S, Chagas MP et al (2008) Application of X-ray technique in nondestructive evaluation of Eucalypt wood. Maderas Cienc Tecnol 10(2):139–145CrossRefGoogle Scholar
  72. Tsuchiya A (1995) Preliminary study on the relationship between vessel growth of thorny shrubs and water balance in the semi-arid region, northeastern Brazil. Geogr Sci 50:123–131Google Scholar
  73. Vetter RE, Botosso PC (1989) Remarks on age and growth rate determination of Amazonian trees. IAWA J 10(2):133–145.  https://doi.org/10.1163/22941932-90000481CrossRefGoogle Scholar
  74. Villalba R, Boninsegna JA, Holmes RL (1985) Cedrela angustifolia and Juglans australis: two new tropical species useful in dendrochronology. Tree-Ring Bull 45:25–35Google Scholar
  75. Villalba R, Boninsegna JA, Ripalta A (1987) Climate, site conditions and tree-growth in subtropical northwestern Argentina. Can J For Res 17(12):1527–1544.  https://doi.org/10.1139/x87-235CrossRefGoogle Scholar
  76. Villalba R, Colmes RL, Boninsegna JA (1992) Spatial patterns of climate and tree-growth anomalies in subtropical northwestern Argentina. J Biogeogr 19(6):631–649.  https://doi.org/10.2307/2845706CrossRefGoogle Scholar
  77. Villalba R, Delgado S, Membiela M et al (2006) Variabilidad interanual de los caracteres anatómicos en el leño de Cedrela lilloi en el noroeste de Argentina. In: Pacheco S, Brown A (eds) Interanual de los caracteres anatómicos en el leño de Cedrela lilloi en el NOA. LIEY-ProYungas, TucumánGoogle Scholar
  78. Wigley TM, Jones PD, Briffa K (1984) On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J Clim Appl Meteorol 23:201–213.  https://doi.org/10.1175/1520-0450(1984)023<0201:OTAVOC>2.0.CO;2CrossRefGoogle Scholar
  79. Worbes M (1989) Growth rings, increment and age of trees inundation forests, savanas and amount in forest in the Neotropics. IAWA Bull 10(2):109–122.  https://doi.org/10.1163/22941932-90000479CrossRefGoogle Scholar
  80. Worbes M (1992) Occurrence of seasonal climate and tree-ring research in the tropics. Lundqua Rep 34:338–342Google Scholar
  81. Worbes M (1995) How to measure growth dynamics in tropical trees: a review. IAWA J 16(4):337–351.  https://doi.org/10.1163/22941932-90001424CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Claudio Sergio Lisi
    • 1
  • Mariana Alves Pagotto
    • 1
  • Claudio Roberto AnholettoJr.
    • 1
  • Francisco Carvalho NogueiraJr.
    • 1
  • Helberson Lima Santos
    • 1
  • Clayane Matos Costa
    • 1
  • Ítallo Romany Nunes Menezes
    • 1
  • Fidel Alejandro Roig Juñet
    • 2
  • Mario Tommasiello Filho
    • 3
  1. 1.Laboratory of Plant Anatomy and Dendroecology, Federal University of Sergipe – UFSSão CristóvãoBrazil
  2. 2.Laboratory of Dendrochronology and Environmental History, IANIGLA, CCT-CONICET-MendozaMendozaArgentina
  3. 3.Forest Science Department, São Paulo University USP/ESALQ – Escola Superior de Agricultura “Luiz de Queiroz”PiracicabaBrazil

Personalised recommendations