Advertisement

How Drought Drives Seasonal Radial Growth in Pinus strobiformis from Northern Mexico

  • Andrea Cecilia Acosta-HernándezEmail author
  • Marín Pompa-García
  • Marcos González-Cásares
  • José Manuel Zúñiga-Vásquez
  • José Ciro Hernández-Díaz
  • José Rodolfo Goche-Telles
  • José Ángel Prieto-Ruíz
  • Juan Abel Nájera-Luna
Chapter
  • 34 Downloads

Abstract

Climate change and its ecological consequences are a highly topical concern, especially because of the effects of climate change on vegetation including forests. Pinus strobiformis is restricted by a unique set of environmental conditions including relative humidity, temperature, precipitation, elevation, and solar radiation that has no other equivalent ecological niche. In this study, the climate sensitivity of earlywood (EW) and latewood (LW) production of P. strobiformis was determined by analyzing the response of EW and LW widths to climate variables (temperature, precipitation, and a drought index) using correlation and regression analyses. The width of each wood type was correlated positively with the drought index and indicated that, in the case of P. strobiformis, the temperature in the preceding season had strong influence on seasonal growth, particularly EW production. These findings enhance our knowledge of the likely response of P. strobiformis growth to predicted climate change.

Keywords

Dendroecology Mexican pine Mesic species Tree rings 

Notes

Acknowledgments

We are grateful to CONACYT for the doctoral scholarship awarded to the first author and for project CB-2013/222522 of CONACYT (National Council of Science and Technology). We also thank COCYTED (Council of Science and Technology of the State of Durango) for the resources granted to support this work. Thanks as well to the community known as “Ejido el Brillante” and to the technical head of the area (Dr. Javier Bretado Velázquez) for the support provided for data collection. We also acknowledge the support received from the Herbarium of CIIDIR-Durango (Interdisciplinary Research Center for Regional Integral Development, Durango Unit) in the measurement of the samples.

References

  1. Acosta-Hernández AC, Pompa-García M, Camarero JJ (2017) An updated review of dendrochronological investigations in Mexico, a megadiverse country with a high potential for tree-ring sciences. Forests 8(5):160.  https://doi.org/10.3390/f8050160
  2. Acosta-Hernández AC, Camarero JJ, Pompa-García M (2019) Seasonal growth responses to climate in wet and dry conifer forests. IAWA J 40(2):311–330.  https://doi.org/10.1163/22941932-40190226CrossRefGoogle Scholar
  3. Adams DK, Comrie AC (1997) The north American monsoon. Bull Am Meteorol Soc 78(10):2197–2214CrossRefGoogle Scholar
  4. Adams HD, Kolb TE (2005) Tree growth response to drought and temperature in a mountain landscape in northern Arizona, USA. J Biogeogr 32:1629–1640.  https://doi.org/10.1111/j.1365-2699.2005.01292.xCrossRefGoogle Scholar
  5. Aguirre-Gutiérrez J, Serna-Chavez HM, Villalobos-Arambula AR et al (2015) Similar but not equivalent: ecological niche comparison across closely-related Mexican white pines. Divers Distrib 21(3):245–257.  https://doi.org/10.1111/ddi.12268CrossRefGoogle Scholar
  6. Allen CD, Breshears DD, McDowell NG (2015) On underestimation of global vulnerability 737 to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 6(8):129.  https://doi.org/10.1890/ES15-00203.1CrossRefGoogle Scholar
  7. Beguería S, Vicente-Serrano SM (2013) SPEI: calculation of the standardised precipitation-evapotranspiration index. R package version 1.6. http://CRAN.R-project.org/package=SPEI
  8. Brzostek ER, Dragoni D, Schmid HP et al (2014) Chronic water stress reduces tree growth and the carbon sink of deciduous hardwood forests. Glob Chang Biol 20(8):2531–2539.  https://doi.org/10.1111/gcb.12528CrossRefPubMedGoogle Scholar
  9. Bunn AG (2008) A dendrochronology program library in R (dplR). Dendrochronologia 26(2):115–124.  https://doi.org/10.1016/j.dendro.2008.01.002CrossRefGoogle Scholar
  10. Bunn AG (2010) Statistical and visual crossdating in R using the dplR library. Dendrochronologia 28(4):251–258.  https://doi.org/10.1016/j.dendro.2009.12.001CrossRefGoogle Scholar
  11. Cabral-Alemán C, Pompa-García M, Acosta-Hernández AC et al (2017) Earlywood and latewood widths of Picea chihuahuana show contrasting sensitivity to seasonal climate. Forests 8:173.  https://doi.org/10.3390/f8050173CrossRefGoogle Scholar
  12. Comisión Nacional del Agua CNA (2011) Programa Nacional Contra la Sequía. Available online: http://www.conafor.gob.mx:8080/documentos/docs/7/4637Programa%20Nacional%20Contra%20la%20Sequ%C3%ADa.pdf
  13. Comisión Nacional del Agua CNA (2016) Datos Climáticos de Estaciones Meteorológicas de Durango: El Salto, México. Available online: http://smn1.conagua.gob.mx/index.php?option=com_content&view=article&id=180:durango&catid=14:normales-por-estacion
  14. Conklin DA, Fairweather ML, Ryerson DE et al (2009) White pines, blister rust, and management in the Southwest. USDA Forest Service Southwestern Region R3-FH-09-01, p 16Google Scholar
  15. Contreras-Lozano JA, Lazcano D, Contreras-Balderas AJ (2012) Herpetofauna of the Cerro El Potosí Natural Protected Area of Nuevo León, Mexico: status of the ecological and altitudinal distribution. Nat Areas J 32(4):377–385.  https://doi.org/10.3375/043.032.0405CrossRefGoogle Scholar
  16. Cook ER, Kairiukstis L (1990) Methods of dendrochronology: applications in the environmental sciences. Kluwer Academic Publishers, Dordrecht, p 351CrossRefGoogle Scholar
  17. Dai A (2013) Increasing drought under global warming in observations and models. Nat Clim Chang 3:52–58.  https://doi.org/10.1038/nclimate163CrossRefGoogle Scholar
  18. D’Arrigo R, Jacoby G, Frank D et al (2001) 1738 years of Mongolian temperature variability inferred from a tree-ring width chronology of Siberian pine. Geophys Res Lett 28(3):543–546CrossRefGoogle Scholar
  19. Donnegan J, Rebertus A (1999) Rates and mechanisms of subalpine forest succession along an environmental gradient. Ecology 80(4):1370–1384.  https://doi.org/10.1890/0012-9658(1999)080[1370:RAMOSF]2.0.CO;2CrossRefGoogle Scholar
  20. Edelman AJ, Koprowski JL (2005) Diet and tree use of Abert’s squirrels (Sciurus aberti) in a mixed-conifer forest. Southwest Nat 50(4):461–465CrossRefGoogle Scholar
  21. Ellison AM, Bank MS, Clinton BD et al (2005) Loss of foundation species: consequences for the structure and dynamics of forested ecosystems. Front Ecol Environ 3(9):479–486CrossRefGoogle Scholar
  22. Farjon A (2013) Pinus strobiformis. La Lista Roja de especies amenazadas de la UICN 2013: e.T42416A2978637.  https://doi.org/10.2305/IUCN.UK.2013-1.RLTS.T42416A2978637.
  23. Fox J, Weisberg S (2018) An R companion to applied regression, 3rd edn. SageGoogle Scholar
  24. Frank DA, Reichstein M, Bahn M et al (2015) Effects of climate extremes on the terrestrial carbon cycle: concepts, processes and potential future impacts. Glob Chang Biol 21:2861–2880.  https://doi.org/10.1111/gcb.12916CrossRefPubMedPubMedCentralGoogle Scholar
  25. Fritts HC (2001) Tree rings and climate. The Blackburn Press, Caldwell, New JerseyGoogle Scholar
  26. Gao BC (1996) NDWI-A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens Environ 58:257–266CrossRefGoogle Scholar
  27. García AA, González EMS (2003) Pináceas de Durango. Instituto de Ecología. AC Comisión Nacional Forestal, León, p 187Google Scholar
  28. Geils BW, Hummer KE, Hunt RS (2010) White pines, Ribes, and blister rust: a review and synthesis. For Pathol 40:147–185.  https://doi.org/10.1111/j.1439-0329.2010.00654.xCrossRefGoogle Scholar
  29. Gernandt DS, Pérez-de la Rosa JA (2014) Biodiversidad de Pinophyta (coníferas) en México. Rev Mex Biodivers 85:126–133.  https://doi.org/10.7550/rmb.32195CrossRefGoogle Scholar
  30. González-Cásares M, Pompa-García M, Camarero-Martínez J (2016) Differences in climate-growth relationship indicate diverse drought tolerances among five pine species coexisting in Northwestern Mexico. Trees 31:531.  https://doi.org/10.1007/s00468-016-1488-0CrossRefGoogle Scholar
  31. González-Elizondo MS, González-Elizondo M, López-Enriquez IL et al (2005a) Cambios y tendencias sucesionales en ecosistemas de Durango. Vid Supra 1:5–11Google Scholar
  32. González-Elizondo M, Jurado E, Návar J et al (2005b) Tree-rings and climate relationships for Douglas-fir chronologies from the Sierra Madre Occidental, Mexico: a 1681–2001 rain reconstruction. Forest Ecol Manag 213:39–53.  https://doi.org/10.1016/j.foreco.2005.03.012CrossRefGoogle Scholar
  33. González-Elizondo MS, González-Elizondo M, Tena-Flores JA et al (2012) Vegetación de la sierra madre occidental, México: Una síntesis. Acta Bot Mex (100):351–403Google Scholar
  34. Goodrich BA, Waring KM, Kolb TE (2016) Genetic variation in Pinus strobiformis growth and drought tolerance from southwestern US populations. Tree Physiol 36:1219–1235.  https://doi.org/10.1093/treephys/tpw052CrossRefPubMedGoogle Scholar
  35. Gu Y, Hunt E, Wardlow B et al (2008) Evaluation of MODIS NDVI and NDWI for vegetation drought monitoring using Oklahoma Mesonet soil moisture data. Geophys Res Lett 35(22).  https://doi.org/10.1029/2008GL035772
  36. Hamrick JL (2004) Response of forest trees to global environmental changes. Forest Ecol Manag 197:323–335.  https://doi.org/10.1016/j.foreco.2004.05.023CrossRefGoogle Scholar
  37. Harvey AE, Byler JW, McDonald GI et al (2008) Death of an ecosystem: perspectives on Western white pine ecosystems of North America at the end of the twentieth century. Gen. Tech. Rep. RMRS-GTR-208. Fort Collins: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, p 10Google Scholar
  38. Holmes RL (1983) Computer-assisted quality control in treering dating and measurement. Tree Ring Bull 43:69–78Google Scholar
  39. Huffman DW, Zegler TJ, Fulé PZ (2015) Fire history of a mixed conifer forest on the Mogollon Rim, northern Arizona, USA. Int J Wildland Fire 24:680.  https://doi.org/10.1071/WF14005CrossRefGoogle Scholar
  40. Instituto Nacional de Estadística y Geografía INEGI (2014) Conjunto de datos vectoriales Perfiles de suelos. Escala 1:1 000 000, DGG-INEGI, México. Available online: http://www.beta.inegi.org.mx/temas/mapas/edafologia/
  41. Intergovernmental Panel on Climate Change IPCC (2014) Climate change 2014: synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change [Core Writing Team, R. K. Pachauri and L. A. Meyer (eds.)]. IPCC, Geneva, p 151CrossRefGoogle Scholar
  42. Kagawa A, Sugimoto A, Maximov TC (2006) 13CO2 pulse-labelling of photoassimilates reveals carbon allocation within and between tree rings. Plant Cell Environ 29:1571–1584.  https://doi.org/10.1111/j.1365-3040.2006.01533CrossRefGoogle Scholar
  43. Karamihalaki M, Stagakis S, Sykioti O et al (2016) Monitoring drought effects on Mediterranean conifer forests using SPOT-vegetation NDVI and NDWI time series. In: Living Planet Symposium, Proceedings of the conference held, pp 9–13Google Scholar
  44. Laughlin DC, Fule PZ, Huffman DW et al (2011) Climatic constraints on trait-based forest assembly. J Ecol 99(6):1489–1499CrossRefGoogle Scholar
  45. Looney CE, Waring KM (2013) Pinus strobiformis (southwestern white pine) stand dynamics, regeneration, and disturbance ecology: a review. Forest Ecol Manag 287:90–102.  https://doi.org/10.1016/j.foreco.2012.09.020CrossRefGoogle Scholar
  46. Martín-Benito D, Cherubini P, Del Río M et al (2008) Growth response to climate and drought in Pinus nigra Arn. trees of different crown classes. Trees 22:363–373.  https://doi.org/10.1007/s00468-007-0191-6CrossRefGoogle Scholar
  47. Millar CI, Stephenson NL (2015) Temperate forest health in an era of emerging 948 megadisturbance. Science 349(6250):823–826CrossRefGoogle Scholar
  48. Pan Y, Birdsey RA, Fang J et al (2011) A large and persistent carbon sink in the world’s forests. Science 333:988–993.  https://doi.org/10.1126/science.1201609CrossRefPubMedGoogle Scholar
  49. Park AD (2001) Environmental influences on post-harvest natural regeneration in Mexican pine–oak forests. For Ecol Manag 144:213–228CrossRefGoogle Scholar
  50. Perry TO (1971) Dormancy of trees in winter. Science 171(3966):29–36.  https://doi.org/10.1126/science.171.3966.29CrossRefPubMedGoogle Scholar
  51. Perry JP (1991) The pines of Mexico and Central America. Timber Press, Portland, p 231Google Scholar
  52. Pompa-García M, Camarero JJ (2015) Reconstructing evaporation from pine tree rings in northern Mexico. Tree-Ring Res 71(2):95–105.  https://doi.org/10.3959/1536-1098-71.2.95CrossRefGoogle Scholar
  53. Pompa-García M, Cerano-Paredes J, Fulé PZ (2013) Variation in radial growth of Pinus cooperi response to climatic signals across an elevational gradient. Dendrochronologia 31:198–204.  https://doi.org/10.1016/j.dendro.2013.05.003CrossRefGoogle Scholar
  54. Pompa-García M, González-Cásares M, Acosta-Hernández AC et al (2017) Drought influence over radial growth of Mexican conifers inhabiting mesic and xeric sites. Forests 8(5):175.  https://doi.org/10.3390/f8050175CrossRefGoogle Scholar
  55. R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. URL https://www.R-project.org/Google Scholar
  56. Rodríguez-Catón M, Villalba R (2018) Indicadores del decaimiento en bosques de Nothofagus pumilio en el norte de la Patagonia, Argentina. Madera Bosques 24(2):e2421588.  https://doi.org/10.21829/myb.2018.2421588CrossRefGoogle Scholar
  57. Rodríguez-Catón M, Villalba R, Morales M et al (2016) Influence of droughts on Nothofagus pumilio forest decline across northern Patagonia, Argentina. Ecosphere 7(7):e01390.  https://doi.org/10.1002/ecs2.1390CrossRefGoogle Scholar
  58. Roman DT, Novick KA, Brzostek ER et al (2015) The 1010 role of isohydric and anisohydric species in determining ecosystem-scale response to 1011 severe drought. Oecologia 179:641.  https://doi.org/10.1007/s00442-015-3380-9CrossRefPubMedGoogle Scholar
  59. Rzedowski J (1978) Vegetación de México. Limusa, México D.FGoogle Scholar
  60. Sage RF, Kubien DS (2007) The temperature response of C3 and C4 photosynthesis. Plant Cell Environ 30:1086–1106.  https://doi.org/10.1111/j.1365-3040.2007.01682.xCrossRefPubMedGoogle Scholar
  61. Samano S, Tomback DF (2003) Cone opening phenology, seed dispersal, and seed predation in southwestern white pine (Pinus strobiformis) in southern Colorado. Ecoscience 10(3):319–326CrossRefGoogle Scholar
  62. Sánchez-Gómez D, Majada J, Alía R et al (2010) Intraspecific variation in growth and allocation patterns in seedlings of Pinus pinaster Ait. submitted to contrasting watering regimes: can water availability explain regional variation? Ann For Sci 67:505.  https://doi.org/10.1051/forest/2010007CrossRefGoogle Scholar
  63. Seager R, Ting M, Davis M et al (2009) Mexican drought: an observational modeling and tree ring study of variability and climate change. Atmósfera 22(1):1–31Google Scholar
  64. Secretaría de Medio Ambiente y Recursos Naturales SEMARNAT (2016) Anuario Estadístico de la Producción Forestal 2016, 1st Edición. Secretaría de Medio Ambiente y Recursos Naturales. Available via DIALOG. https://www.gob.mx/cms/uploads/attachment/file/282951/2016.pdf. Accessed 10 Jan 2019 
  65. Shaw CH (1909) The causes of timber line on mountains; the role of snow. Plant World 12(8):169–181Google Scholar
  66. Splechtna BE, Dobrys J, Klinka K (2000) Tree-ring characteristics of subalpine fir (Abies lasiocarpa (Hook.) Nutt.) in relation to elevation and climatic fluctuations. Ann For Sci 57(2):89–100.  https://doi.org/10.1051/forest:2000105CrossRefGoogle Scholar
  67. Stahle DW, Cook ER, Burnette DJ et al (2016) The Mexican drought atlas: tree-ring reconstructions of the soil moisture balance during the late pre-Hispanic, colonial, and modern eras. Quat Sci Rev 149:34–60.  https://doi.org/10.1016/j.quascirev.2016.06.018CrossRefGoogle Scholar
  68. Stokes MA, Smiley TL (1968) An introduction to treering dating. University of Chicago Press, Chicago, p 73Google Scholar
  69. Thomas CD (2011) Translocation of species, climate change, and the end of trying to recreate past ecological communities. Trends Ecol Evol 26(5):216–221.  https://doi.org/10.1016/j.tree.2011.02.006CrossRefPubMedGoogle Scholar
  70. Torbenson MCA, Stahl DW, Villanueva-Díaz J et al (2016) The relationship between earlywood and latewood ring-growth across North America. Tree-Ring Res 72(2):53–66.  https://doi.org/10.3959/1536-1098-72.02.53CrossRefGoogle Scholar
  71. Trenberth KE, Dai A, van der Schrier G et al (2014) Global warming and changes in drought. Nat Clim Chan 4:17–22.  https://doi.org/10.1038/NCLIMATE2067CrossRefGoogle Scholar
  72. Venables WN, Ripley BD (2002) Tree-based methods. In: Modern applied statistics with S-plus. Springer, New York, pp 251–269CrossRefGoogle Scholar
  73. Vicente-Serrano SM, Beguería S, López-Moreno JI (2010) A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. J Clim 23:1696–1718.  https://doi.org/10.1175/2009JCLI2909.1CrossRefGoogle Scholar
  74. Way DA, Oren R (2010) Differential responses to changes in growth temperature between trees from different functional groups and biomes: a review and synthesis of data. Tree Physiol 30(6):669–688.  https://doi.org/10.1093/treephys/tpq015CrossRefPubMedGoogle Scholar
  75. Weiser CJ (1970) Cold resistance and injury in woody plants: knowledge of hardy plant adaptations to freezing stress may help us to reduce winter damage. Science 169(3952):1269–1278.  https://doi.org/10.1126/science.169.3952.1269CrossRefPubMedGoogle Scholar
  76. Wigley TM, Briffa KR, Jones PD (1984) On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J Clim Appl Meteorol 23(2):201–213CrossRefGoogle Scholar
  77. Williams AP, Allen CD, Millar CI (2010) Forest responses to increasing aridity and warmth in the southwestern United States. Proc Natl Acad Sci 107(50):21289–21294.  https://doi.org/10.1073/pnas.0914211107CrossRefPubMedGoogle Scholar
  78. Zeglen S, Pronos J, Merler H (2010) Silvicultural management of white pines in western North America. For Pathol 40:347–368.  https://doi.org/10.1111/j.1439-0329.2010.00662.xCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Andrea Cecilia Acosta-Hernández
    • 1
    Email author
  • Marín Pompa-García
    • 2
  • Marcos González-Cásares
    • 1
  • José Manuel Zúñiga-Vásquez
    • 2
  • José Ciro Hernández-Díaz
    • 3
  • José Rodolfo Goche-Telles
    • 2
  • José Ángel Prieto-Ruíz
    • 2
  • Juan Abel Nájera-Luna
    • 4
  1. 1.Programa Institucional de Doctorado en Ciencias Agropecuarias y ForestalesUniversidad Juárez del Estado de DurangoDurangoMexico
  2. 2.Facultad de Ciencias ForestalesUniversidad Juárez del Estado de DurangoDurangoMexico
  3. 3.Instituto de Silvicultura e Industria de la Madera, Universidad Juárez del Estado de DurangoDurangoMexico
  4. 4.Instituto Tecnológico de El SaltoDurangoMexico

Personalised recommendations