Advertisement

Patterns of Tree Establishment Following Glacier-Induced Floods in Southern Patagonia

  • Claudia M. Guerrido
  • Ricardo Villalba
  • Mariano M. Amoroso
  • Milagros Rodríguez-Catón
Chapter
  • 33 Downloads

Abstract

Whereas tree establishment after large-scale disturbances such as fires, avalanches, and landslides have been documented for Patagonian forests, information on forest recovery following floods is scarce. Glaciar Perito Moreno has remained stable throughout the twentieth century, reaching the Peninsula de Magallanes several times and embalming parts of Lago Argentino. Following each ice-dam flood, the Nothofagus forests along the flooded shores die. We combined dendrochronology and spatial statistics to describe forest recolonization following the episodic flood caused by this glacier in 1988. Four tree species recolonized the lakeshores after the flood. Tree establishment started during spring-summer 1988–1989, the growing season following the break of the ice dam in February 1988. More than 60% of the trees were established between the years 1994–2000, suggesting a rapid colonization of bare shores after the ice-dam break. Using Ripley’s spatial analysis, a 100% significant association between species was recorded at sites where two or more species were present. Species dominance was largely modulated by the composition of neighboring non-flooded forests and the climatic conditions along the precipitation gradient. While rates of tree colonization are influenced by species and their seed dispersal capacities, the grouping patterns by site may be modulated by differences in substrate and microclimatic conditions.

Keywords

Dendrochronology Forest dynamics Nothofagus Spatial analysis 

Notes

Acknowledgments

The authors would like to thank to the Administración de Parques Nacionales for granting us the permits to conduct our research and to Hielo y Aventura S.A. for invaluable field assistance. This work was financially supported by a scholarship for the training of doctoral student (PRH 13 PFDT ANPCyT – UNPA – UART) and the following research projects: PICT 00215 ANPCyT and CONICET (PIP 112-2011010-0809 to R.V.). R.V. acknowledges the support of the BNP-PARIBAS Foundation through the THEMES Project.

References

  1. Alberdi M, Donoso C (2004) Variación en Embothrium coccineum JR et G. Forster (notro o ciruelillo). In: Donoso C, Premoli A, Gallo L et al (eds) Variación intraespecífica en especies arbóreas de los bosques templados de Chile y Argentina. Editorial Universitaria, SantiagoGoogle Scholar
  2. Amoroso MM, Suarez ML, Daniels LD (2012) Nothofagus dombeyi regeneration in declining Austrocedrus chilensis forests: effects of overstory mortality and climatic events. Dendrochronologia 30:105–112.  https://doi.org/10.1016/j.dendro.2010.12.005CrossRefGoogle Scholar
  3. Armesto JJ, Casassa I, Dollenz O (1992) Age structure and dynamics of Patagonian beech forests in Torres del Paine National Park, Chile. Vegetatio 98:13–22.  https://doi.org/10.1007/BF00031633CrossRefGoogle Scholar
  4. Baddeley A, Diggle PJ, Hardegen A et al (2014) On tests of spatial pattern based on simulation envelopes. Ecol Monogr 84:477–489.  https://doi.org/10.1890/13-2042.1CrossRefGoogle Scholar
  5. Bisigato AJ, Bertiller MB (1997) Grazing effects on patchy dryland vegetation in northern Patagonia. J Arid Environ 36:639–653.  https://doi.org/10.1006/jare.1996.0247CrossRefGoogle Scholar
  6. Blackhall M, Raffaele E, Veblen TT (2008) Cattle affect early post-fire regeneration in a Nothofagus dombeyiAustrocedrus chilensis mixed forest in northern Patagonia, Argentina. Biol Conserv 141:2251–2261.  https://doi.org/10.1016/j.biocon.2008.06.016CrossRefGoogle Scholar
  7. Burgos JJ (1985) Clima del extremo sur de Sudamérica. In: Boelcke O, Moore DM, Roig FA (eds) Transecta Botánica de la Patagonia Austral. Buenos Aires, Santiago, Londres, pp 10–40Google Scholar
  8. Cuevas JG (2000) Tree recruitment at the Nothofagus pumilio alpine timberline in Tierra del Fuego, Chile. J Ecol 88:840–855.  https://doi.org/10.1046/j.1365-2745.2000.00497.xCrossRefGoogle Scholar
  9. Di Rienzo JA, Casanoves F, Balzarini MG et al (2011) InfoStat Versión 2011. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, ArgentinaGoogle Scholar
  10. de la Cruz M (2006) Introducción al análisis de datos mapeados o algunas de las (muchas) cosas que puedo hacer si tengo coordenadas. Ecosistemas 15(3):19–39Google Scholar
  11. Diggle PJ (2003) Statistical analysis of spatial point patterns, 2nd edn. Arnold, LondonGoogle Scholar
  12. Dollenz O (1995) Los árboles y bosques de Magallanes. Ediciones Universidad de Magallanes, Punta ArenasGoogle Scholar
  13. Dollenz O, Henríquez J, Domínguez E (2012) La vegetación de las geoformas proglaciares en los glaciares Balmaceda, Tyndall Taraba y Ema, Magallanes, Chile. An Inst Patagon 40:7–17.  https://doi.org/10.4067/S0718-686X2012000200001CrossRefGoogle Scholar
  14. Donoso C, Steinke L, Premoli A (2006) Nothofagus antarctica (G. Forster) Oerst. Familia: Fagaceae. In: Donoso C (ed) Especies arbóreas de los bosques templados de Chile y Argentina. Autoecología Marisa Cúneo Ediciones, Santiago, pp 448–461Google Scholar
  15. Donoso D, Donoso P (2006) Nothofagus betuloides (Mirb.) Oerst. Familia: Fagaceae. In: Donoso C (ed) Especies arbóreas de los bosques templados de Chile y Argentina. Autoecología Marisa Cúneo Ediciones, Santiago, pp 448–461Google Scholar
  16. Escobar B, Donoso C, Souto C et al (2006) Embothrium coccineum J.R. et. G. Forster Familia: Proteaceae. In: Donoso C (ed) Especies arbóreas de los bosques templados de Chile y Argentina. Autoecología Marisa Cúneo Ediciones, Santiago, pp 448–461Google Scholar
  17. Fajardo A, Alaback P (2005) Effects of natural and human disturbances on the dynamics and spatial structure of Nothofagus glauca in south-central Chile. J Biogeogr 32:1811–1825.  https://doi.org/10.1111/j.1365-2699.2005.01331.xCrossRefGoogle Scholar
  18. Franklin J, Lindenmayer DB, MacMahon JA et al (2000) Threads of continuity: ecosystems disturbance, recovery, and the theory of biological legacies. Conserv Biol Pract 1(1):8–16CrossRefGoogle Scholar
  19. Garibotti IA, Pissolito CI, Villalba R (2011) Spatiotemporal pattern of primary succession in relation to Meso-topographic gradients on recently Deglaciated terrains in the Patagonian Andes. Arct Antarct Alp Res 43:555–567.  https://doi.org/10.1657/1938-4246-43.4.555CrossRefGoogle Scholar
  20. González ME, Donoso C, Ovalle P et al (2006) Nothofaus pumilio (Poep. Et Endl) Krasser Familia: Fagaceae. In: Donoso C (ed) Especies arbóreas de los bosques templados de Chile y Argentina. Autoecología Marisa Cúneo Ed, Santiago, pp 448–461Google Scholar
  21. González ME, Amoroso MM, Lara A et al (2014) Ecología de disturbios y su influencia en los bosques templados de Argentina y Chile. In: Donoso C, González ME, Lara A (eds) Ecología Forestal, Bases para el Manejo Sustentable y Conservación de los bosques nativos de Chile. Ed. Universidad Austral de Chile, Valdivia, Chile, pp 411–502Google Scholar
  22. Guerrido CM, Villalba R, Rojas F (2014) Documentary and tree-ring evidence for a long-term interval without ice impoundments from Glaciar Perito Moreno, Patagonia, Argentina. The Holocene 24:1686–1693.  https://doi.org/10.1177/0959683614551215CrossRefGoogle Scholar
  23. Heinemann K, Kitzberger T (2006) Effects of position, understory vegetation and coarse woody debris on tree regeneration in two environmentally contrasting forests of North-Western Patagonia: a manipulative approach. J Biogeogr 33:1357–1367.  https://doi.org/10.1111/j.1365-2699.2006.01511.xCrossRefGoogle Scholar
  24. Inventario Nacional de Glaciares IANIGLA (2018) Informe de las subcuencas Brazo Sur del Lago Argentino y río Bote. Cuenca del río Santa Cruz. Parque Nacional Los Glaciares. IANIGLA-CONICET, Secretaría de Ambiente y Desarrollo Sustentable de la NaciónGoogle Scholar
  25. Jackson ML (1958) Soil chemical analysis. Prentice-Hall, Inc., Englewood CliffsGoogle Scholar
  26. Kalela EK (1941) Über die Holzarten und die durch die klimatischen Verhältnisse verursachten Holzartenwechsel in den Wäldern Ostpatagoniens. Annales Academiae Scientarium Fennicae, Series A 2: 5–151. In: Veblen TT, Donoso C, Kitzberger T, Rebertus A (1996) Ecology of Southern Chilean and Argentinean Nothofagus forest. In: Veblen TT, Hall RS, Read J (eds) The ecology and biogeography of Nothofagus forest. Yale University Press, New Haven/LondonGoogle Scholar
  27. Kirk PL (1950) Kjeldahl method for organic nitrogen. Anal Chem 22:354–358.  https://doi.org/10.1021/ac60038a038CrossRefGoogle Scholar
  28. Kitzberger T, Veblen TT, Villalba R (2000) Métodos dendroecológicos y sus aplicaciones en estudios de dinámica de bosques templados de Sudamérica. In: Roig F (ed) Manual Latinoamericano de Dendrocronología. Editorial de la Universidad Nacional de Cuyo, MendozaGoogle Scholar
  29. Martín G (ed) (1997) Plan Preliminar de Manejo Parque Nacional Los Glaciares. Administración de Parques Nacionales, El Calafate, Argentina, pp 174Google Scholar
  30. Martínez-Pastur G, Lencinas M, Peri P (1994) Variación de parámetros estructurales y de composición del sotobosque de Nothofagus pumilio en relación a gradientes ambientales indirectos. Ciencias Forestales 9(1–2):11–22Google Scholar
  31. Martínez-Pastur G, Lencinas M, Escobar J et al (2006) Understory succession in Nothofagus forest in Tierra del Fuego, (Argentina) affected by Castor canadensis. Appl Veg Sci 9:143–154.  https://doi.org/10.1658/1402-2001(2006)9[143:USINFI]2.0.CO;2CrossRefGoogle Scholar
  32. Moore DM (1983) Flora of Tierra del Fuego. Anthony Nelson England and Missouri Botanical Garden, New YorkGoogle Scholar
  33. Oliver CD (1980) Forest development in North America following major disturbances. For Ecol Manag 3:153–168.  https://doi.org/10.1016/0378-1127(80)90013-4CrossRefGoogle Scholar
  34. Oliver CD, Larson BC (1996) Forest stand dynamics. Wiley, New YorkGoogle Scholar
  35. Olsen SR, Sommers LE (1982) Phosphorus. In: Page AL (ed) Methods of soil analysis part 2 chemical and microbiological properties. American Society of Agronomy, Soil Science Society of America, Madison, pp 403–430Google Scholar
  36. Pérez-Moreau R (1959) Reseña Botánica sobre el Lago Argentino. Instituto Nacional del Hielo Continental Patagónico, Buenos Aires, Argentina, pp 35Google Scholar
  37. Peri PL, Martínez-Pastur G (2003) Denominación de Origen’Madera Fueguina. Publicación Técnica Forestal. Gobierno de Tierra del Fuego – Consejo Federal de Inversiones, Ushuaia, Argentina, pp 29Google Scholar
  38. Picket ST, White PS (1985) The ecology of natural disturbance and patch dynamics. Academic Press, New YorkGoogle Scholar
  39. Rebertus AJ, Veblen TT (1993) Structure and tree-fall gap dynamic of old-growth Nothofagus forest in Tierra del Fuego, Argentina. J Veg Sci 4:641–654.  https://doi.org/10.2307/3236129CrossRefGoogle Scholar
  40. Rebertus AJ, Kitzberger T, Veblen TV et al (1997) Blowdown history and landscape patterns in the Andes of Tierra del Fuego, Argentina. Ecology 78:678–692.  https://doi.org/10.1890/0012-9658(1997)078[0678:BHALPI]2.0.CO;2CrossRefGoogle Scholar
  41. Ripley BD (1981) Spatial statistics. Wiley, New YorkCrossRefGoogle Scholar
  42. Roig FA, Anchorena J, Dollenz O, Faggi AM, Méndez E (1985) Las comunidades vegetales de la Transecta Botánica de la Patagonia Austral. Primera parte: La vegetación del área continental. In: Boelcke O, Moore DM, Roig FA (eds), Transecta Botánica de la Patagonia Austral (pp. 350–456). CONICET, (Argentina), Royal Society (Gran Bretaña) e Instituto de la Patagonia (Chile)Google Scholar
  43. Rovere AE, Premoli AC (2005) Dispersión asimétrica de semillas de Embothrium coccineum (Proteaceae) en el bosque templado de Chiloé, Chile. Ecol Austral 15(1):1–7Google Scholar
  44. Rush V (1992) Principales limitantes para la regeneración de la lenga en la zona NE de su área de distribución. Variables ambientales en claros del bosque. In: Bava J, Schmalz J (eds) Actas Seminario de Manejo Forestal de la Lenga y Aspectos Ecológicos Relacionados, vol 8. CIEFAP, Publicación Técnica, Esquel, pp 61–73Google Scholar
  45. Rush V (1993) Altitudinal variation in the phenology of Nothofagus pumilio in Argentina. Rev Chil Hist Nat 66:131–141Google Scholar
  46. Schulman E (1956) Dendroclimatic change in semiarid America. University of Arizona Press, TucsonGoogle Scholar
  47. Schmidt H, Urzua A (1982) Transformación y manejo de los bosques de lenga en Magallanes. Ciencias Agrícolas (Universidad de Chile, Santiago) 11:1–62. In: Arturi MF, Frangi JL, Goya JF (eds) Ecología y Manejo de bosques de Argentina. Editorial Universidad de La Plata, La PlataGoogle Scholar
  48. Srur AM, Golluscio RA, Villalba R et al (2013) Grazing-induced morphological and growth rate changes in Anarthrophyllum rigidum, a Patagonian leguminous shrub. Dendrochronologia 31:223–227.  https://doi.org/10.1016/j.dendro.2013.02.002CrossRefGoogle Scholar
  49. Srur AM, Villalba R, Rodríguez-Catón M et al (2016) Establishment of Nothofagus pumilio at upper treelines across a precipitation gradient in the northern Patagonian Andes. Arct Antarct Alp Res 48:755–766.  https://doi.org/10.1657/AAAR0016-015CrossRefGoogle Scholar
  50. Srur AM, Villalba R, Rodríguez-Catón M et al (2018) Climate and Nothofagus pumilio establishment at upper treelines in the Patagonian Andes. Front Earth Sci 6:57.  https://doi.org/10.3389/feart.2018.00057CrossRefGoogle Scholar
  51. Stokes MA, Smiley TL (1968) An introduction to tree-ring dating. University of Chicago Press, ChicagoGoogle Scholar
  52. Stuefer M (1999) Investigations on mass balance and dynamics of Moreno Glacier base on field Measurments and satellite imagery. PhD thesis. University of Innsbruck, InnsbruckGoogle Scholar
  53. Urretavizcaya MF, Contardi L, Oyharçabal MF et al (2016) Calidad de semillas de especies nativas del bosque andino patagónico de la provincia de Chubut y su importancia para la producción de plantines. Rev Fac Agron 115(1):9–18Google Scholar
  54. Veblen TT, Ashton DH, Schlegel FM et al (1977) Plant succession in a timberline depressed by volcanism in south-Central Chile. J Biogeogr 1:275–294.  https://doi.org/10.2307/3038061CrossRefGoogle Scholar
  55. Veblen TT, Ashton DH (1978) Catastrophic influences on the vegetation of the Valdivian Andes, Chile. Vegetatio 36:149–167.  https://doi.org/10.1007/BF02342598CrossRefGoogle Scholar
  56. Veblen TT, Donoso C, Schlegel ZFM et al (1981) Forest dynamics in southern-central Chile. J Biogeogr 8:211–247CrossRefGoogle Scholar
  57. Veblen TT, Donoso C, Kitzberger T et al (1996) Ecology of Southern Chilean and Argentinean Nothofagus forest. In: Veblen TT, Hall RS, Read J (eds) The ecology and biogeography of Nothofagus forest. Yale University Press, New Haven/LondonGoogle Scholar
  58. Veblen TT, Kitzberger T, Villalba R (2005) Nuevos paradigmas en ecología y su influencia sobre el conocimiento de la dinámica de los bosques del sur de Argentina y Chile. In: Arturi MF, Frangi JL, Goya JF (eds) Ecología y Manejo de bosques de Argentina. Editorial Universidad de La Plata, La PlataGoogle Scholar
  59. Wiegand T, Moloney KA (2004) Rings, circles, and null-models for point pattern analysis in ecology. Oikos 104:209–229.  https://doi.org/10.1111/j.0030-1299.2004.12497.xCrossRefGoogle Scholar
  60. Yamaguchi DK (1991) A simple method for cross dating increment cores from living trees. Can J For Res 21:414–146.  https://doi.org/10.1139/x91-053CrossRefGoogle Scholar
  61. Zar JH (1999) Biostatistical analysis, 4th edn. Prentice Hall, Upper Saddle RiverGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Claudia M. Guerrido
    • 1
  • Ricardo Villalba
    • 2
  • Mariano M. Amoroso
    • 3
    • 4
  • Milagros Rodríguez-Catón
    • 2
  1. 1.ICASUR-UART Instituto Ciencias del Ambiente Sustentabilidad y Recursos Naturales, Universidad Nacional de la Patagonia AustralRío TurbioArgentina
  2. 2.Instituto Argentino de Glaciología, Nivología y Ciencias Ambientales IANIGLA-CONICET-MendozaMendozaArgentina
  3. 3.IRNAD Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural, Sede Andina, Universidad Nacional de Río NegroBolsónArgentina
  4. 4.Consejo de Investigaciones Científicas y Técnicas, CCT – Patagonia NorteS. C. de BarilocheArgentina

Personalised recommendations