Advertisement

Diastolic and Systolic Dysfunction of the Heart and Thyroid Hormone Abnormalities

  • Yi-Da TangEmail author
Chapter
  • 39 Downloads

Abstract

Thyroid hormone (TH) has strong positive chronotropic and inotropic action on cardiac myocyte during systolic period and also enhances the duration of diastolic relaxation. Systolic and diastolic changes of the heart made by triiodothyronine (T3) is not only caused by its direct action on cardiac myocyte but also indirectly mediated by its effects on peripheral vessels and renin-angiotensin-aldosterone system (RAAS). In hyperthyroid heart, the number of β-adrenergic receptors is upregulated, causing an imbalanced sympathovagal tone. In hyperthyroidism, thyroid hormones promote the breakdown of collagen by increasing matrix metalloproteinase-1 activity, leading to hypertrophy without increased fibrosis, at least in the earlier stage. Hypothyroidism-mediated characteristic changes in the expression of cardiac genes, such as reduced levels of the sarcoplasmic reticulum Ca2+-ATPase (SERCA2), and increased expression of phospholamban, which play a significant role in regulating intracellular calcium cycling, can partly account for the decreased cardiac contractility and the abnormalities in diastolic function. Thyroid dysfunction also alters blood pressure, and hypertension combined with hypothyroidism appears to be characterized by a low-renin state. Animal models showed that administration of low-dose T3 after myocardial infarction improved cardiac structure and function, decreased the incidence of tachyarrhythmia, and reduced adverse left ventricular remodeling. The beneficial effects of thyroid hormone make it potentially attractive for the usage in the management of cardiac diastolic and systolic dysfunction.

Keywords

Thyroid hormones Cardiac diastolic function Cardiac systolic function Subclinical thyroid dysfunction Vascular function Heart failure Arrhythmia Thyroid hormone replacement therapy 

References

  1. 1.
    Mintz G, Pizzarello R, Klein I. Enhanced left ventricular diastolic function in hyperthyroidism: noninvasive assessment and response to treatment. J Clin Endocrinol Metab. 1991;73(1):146–50.  https://doi.org/10.1210/jcem-73-1-146.CrossRefPubMedGoogle Scholar
  2. 2.
    Hamilton MA, Stevenson LW, Luu M, Walden JA. Altered thyroid hormone metabolism in advanced heart failure. J Am Coll Cardiol. 1990;16(1):91–5.CrossRefGoogle Scholar
  3. 3.
    Pingitore A, Iervasi G, Barison A, Prontera C, Pratali L, Emdin M, et al. Early activation of an altered thyroid hormone profile in asymptomatic or mildly symptomatic idiopathic left ventricular dysfunction. J Card Fail. 2006;12(7):520–6.  https://doi.org/10.1016/j.cardfail.2006.05.009.CrossRefGoogle Scholar
  4. 4.
    Pantos C, Dritsas A, Mourouzis I, Dimopoulos A, Karatasakis G, Athanassopoulos G, et al. Thyroid hormone is a critical determinant of myocardial performance in patients with heart failure: potential therapeutic implications. Eur J Endocrinol. 2007;157(4):515–20.  https://doi.org/10.1530/EJE-07-0318.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Klein I, Ojamaa K. Thyroid hormone and the cardiovascular system. N Engl J Med. 2001;344(7):501–9.  https://doi.org/10.1056/NEJM200102153440707.CrossRefGoogle Scholar
  6. 6.
    Le Bouter S, Demolombe S, Chambellan A, Bellocq C, Aimond F, Toumaniantz G, et al. Microarray analysis reveals complex remodeling of cardiac ion channel expression with altered thyroid status: relation to cellular and integrated electrophysiology. Circ Res. 2003;92(2):234–42.CrossRefGoogle Scholar
  7. 7.
    Carvalho-Bianco SD, Kim BW, Zhang JX, Harney JW, Ribeiro RS, Gereben B, et al. Chronic cardiac-specific thyrotoxicosis increases myocardial beta-adrenergic responsiveness. Mol Endocrinol. 2004;18(7):1840–9.  https://doi.org/10.1210/me.2003-0125.CrossRefPubMedGoogle Scholar
  8. 8.
    Zhang Y, Dedkov EI, Lee B 3rd, Li Y, Pun K, Gerdes AM. Thyroid hormone replacement therapy attenuates atrial remodeling and reduces atrial fibrillation inducibility in a rat myocardial infarction-heart failure model. J Card Fail. 2014;20(12):1012–9.  https://doi.org/10.1016/j.cardfail.2014.10.003.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Owen PJ, Sabit R, Lazarus JH. Thyroid disease and vascular function. Thyroid. 2007;17(6):519–24.  https://doi.org/10.1089/thy.2007.0051.CrossRefPubMedGoogle Scholar
  10. 10.
    Samuels HH, Tsai JS, Casanova J, Stanley F. Thyroid hormone action: in vitro characterization of solubilized nuclear receptors from rat liver and cultured GH1 cells. J Clin Invest. 1974;54(4):853–65.  https://doi.org/10.1172/jci107825.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Larsen PR. Thyroid-pituitary interaction: feedback regulation of thyrotropin secretion by thyroid hormones. N Engl J Med. 1982;306(1):23–32.  https://doi.org/10.1056/NEJM198201073060107.CrossRefPubMedGoogle Scholar
  12. 12.
    Salvatore D, Bartha T, Harney JW, Larsen PR. Molecular biological and biochemical characterization of the human type 2 selenodeiodinase. Endocrinology. 1996;137(8):3308–15.  https://doi.org/10.1210/endo.137.8.8754756.CrossRefPubMedGoogle Scholar
  13. 13.
    Pol CJ, Muller A, Zuidwijk MJ, van Deel ED, Kaptein E, Saba A, et al. Left-ventricular remodeling after myocardial infarction is associated with a cardiomyocyte-specific hypothyroid condition. Endocrinology. 2011;152(2):669–79.  https://doi.org/10.1210/en.2010-0431.CrossRefGoogle Scholar
  14. 14.
    Brent GA. Mechanisms of thyroid hormone action. J Clin Invest. 2012;122(9):3035–43.  https://doi.org/10.1172/JCI60047.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Roden DM, George AL Jr. The cardiac ion channels: relevance to management of arrhythmias. Annu Rev Med. 1996;47:135–48.  https://doi.org/10.1146/annurev.med.47.1.135.CrossRefPubMedGoogle Scholar
  16. 16.
    Razvi S, Jabbar A, Pingitore A, Danzi S, Biondi B, Klein I, et al. Thyroid hormones and cardiovascular function and diseases. J Am Coll Cardiol. 2018;71(16):1781–96.  https://doi.org/10.1016/j.jacc.2018.02.045.CrossRefGoogle Scholar
  17. 17.
    Kranias EG, Hajjar RJ. Modulation of cardiac contractility by the phospholamban/SERCA2a regulatome. Circ Res. 2012;110(12):1646–60.  https://doi.org/10.1161/CIRCRESAHA.111.259754.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Dillmann W. Cardiac hypertrophy and thyroid hormone signaling. Heart Fail Rev. 2010;15(2):125–32.  https://doi.org/10.1007/s10741-008-9125-7.CrossRefPubMedGoogle Scholar
  19. 19.
    Hoit BD, Khoury SF, Shao Y, Gabel M, Liggett SB, Walsh RA. Effects of thyroid hormone on cardiac beta-adrenergic responsiveness in conscious baboons. Circulation. 1997;96(2):592–8.CrossRefGoogle Scholar
  20. 20.
    Ojamaa K, Klein I, Sabet A, Steinberg SF. Changes in adenylyl cyclase isoforms as a mechanism for thyroid hormone modulation of cardiac beta-adrenergic receptor responsiveness. Metabolism. 2000;49(2):275–9.CrossRefGoogle Scholar
  21. 21.
    Dillmann WH. Cellular action of thyroid hormone on the heart. Thyroid. 2002;12(6):447–52.  https://doi.org/10.1089/105072502760143809.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Tang YD, Kuzman JA, Said S, Anderson BE, Wang X, Gerdes AM. Low thyroid function leads to cardiac atrophy with chamber dilatation, impaired myocardial blood flow, loss of arterioles, and severe systolic dysfunction. Circulation. 2005;112(20):3122–30.  https://doi.org/10.1161/CIRCULATIONAHA.105.572883.CrossRefGoogle Scholar
  23. 23.
    Liu Y, Redetzke RA, Said S, Pottala JV, de Escobar GM, Gerdes AM. Serum thyroid hormone levels may not accurately reflect thyroid tissue levels and cardiac function in mild hypothyroidism. Am J Physiol Heart Circ Physiol. 2008;294(5):H2137–43.  https://doi.org/10.1152/ajpheart.01379.2007.CrossRefGoogle Scholar
  24. 24.
    Adamopoulos S, Gkouziouta A, Lazaros G, Karavolias G, Xatzianastasiou S, Aznaouridis K, et al. Endomyocardial biopsy in new onset dilated cardiomyopathy: prevalence and prognostic role of infectious agents. Int J Cardiol. 2013;168(4):e129–30.  https://doi.org/10.1016/j.ijcard.2013.08.035.CrossRefPubMedGoogle Scholar
  25. 25.
    Klein I, Danzi S. Thyroid disease and the heart. Circulation. 2007;116(15):1725–35.  https://doi.org/10.1161/CIRCULATIONAHA.106.678326.CrossRefGoogle Scholar
  26. 26.
    Karthik S, Pal GK, Nanda N, Hamide A, Bobby Z, Amudharaj D, et al. Sympathovagal imbalance in thyroid dysfunctions in females: correlation with thyroid profile, heart rate and blood pressure. Indian J Physiol Pharmacol. 2009;53(3):243–52.PubMedGoogle Scholar
  27. 27.
    Nabbout LA, Robbins RJ. The cardiovascular effects of hyperthyroidism. Methodist Debakey Cardiovasc J. 2010;6(2):3–8.CrossRefGoogle Scholar
  28. 28.
    Martinez F. Thyroid hormones and heart failure. Heart Fail Rev. 2016;21(4):361–4.  https://doi.org/10.1007/s10741-016-9556-5.CrossRefPubMedGoogle Scholar
  29. 29.
    Danzi S, Klein I. Thyroid hormone and the cardiovascular system. Minerva Endocrinol. 2004;29(3):139–50.PubMedGoogle Scholar
  30. 30.
    Vargas-Uricoechea H, Bonelo-Perdomo A, Sierra-Torres CH. Effects of thyroid hormones on the heart. Clin Investig Arterioscler. 2014;26(6):296–309.  https://doi.org/10.1016/j.arteri.2014.07.003.CrossRefPubMedGoogle Scholar
  31. 31.
    Christ-Crain M, Morgenthaler NG, Meier C, Muller C, Nussbaumer C, Bergmann A et al. Pro-A-type and N-terminal pro-B-type natriuretic peptides in different thyroid function states. Swiss Med Wkly. 2005;135(37–38):549–54. https://doi.org/2005/37/smw-11119.
  32. 32.
    Osuna PM, Udovcic M, Sharma MD. Hyperthyroidism and the heart. Methodist Debakey Cardiovasc J. 2017;13(2):60–3.  https://doi.org/10.14797/mdcj-13-2-60.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Goldman S, McCarren M, Morkin E, Ladenson PW, Edson R, Warren S, et al. DITPA (3,5-Diiodothyropropionic Acid), a thyroid hormone analog to treat heart failure: phase II trial veterans affairs cooperative study. Circulation. 2009;119(24):3093–100.  https://doi.org/10.1161/CIRCULATIONAHA.108.834424.CrossRefGoogle Scholar
  34. 34.
    Yao J, Eghbali M. Decreased collagen gene expression and absence of fibrosis in thyroid hormone-induced myocardial hypertrophy. Response of cardiac fibroblasts to thyroid hormone in vitro. Circ Res. 1992;71(4):831–9.CrossRefGoogle Scholar
  35. 35.
    Chen WJ, Lin KH, Lee YS. Molecular characterization of myocardial fibrosis during hypothyroidism: evidence for negative regulation of the pro-alpha1(I) collagen gene expression by thyroid hormone receptor. Mol Cell Endocrinol. 2000;162(1–2):45–55.CrossRefGoogle Scholar
  36. 36.
    Ghose Roy S, Mishra S, Ghosh G, Bandyopadhyay A. Thyroid hormone induces myocardial matrix degradation by activating matrix metalloproteinase-1. Matrix Biol. 2007;26(4):269–79.  https://doi.org/10.1016/j.matbio.2006.12.005.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Wang W, Guan H, Fang W, Zhang K, Gerdes AM, Iervasi G, et al. Free triiodothyronine level correlates with myocardial injury and prognosis in idiopathic dilated cardiomyopathy: evidence from cardiac MRI and SPECT/PET imaging. Sci Rep. 2016;6:39811.  https://doi.org/10.1038/srep39811.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Gencer B, Collet TH, Virgini V, Bauer DC, Gussekloo J, Cappola AR, et al. Subclinical thyroid dysfunction and the risk of heart failure events: an individual participant data analysis from 6 prospective cohorts. Circulation. 2012;126(9):1040–9.  https://doi.org/10.1161/CIRCULATIONAHA.112.096024.CrossRefGoogle Scholar
  39. 39.
    Iervasi G, Molinaro S, Landi P, Taddei MC, Galli E, Mariani F, et al. Association between increased mortality and mild thyroid dysfunction in cardiac patients. Arch Intern Med. 2007;167(14):1526–32.  https://doi.org/10.1001/archinte.167.14.1526.CrossRefGoogle Scholar
  40. 40.
    Gullu S, Altuntas F, Dincer I, Erol C, Kamel N. Effects of TSH-suppressive therapy on cardiac morphology and function: beneficial effects of the addition of beta-blockade on diastolic dysfunction. Eur J Endocrinol. 2004;150(5):655–61.CrossRefGoogle Scholar
  41. 41.
    Klein I, Danzi S. Thyroid disease and the heart. Curr Probl Cardiol. 2016;41(2):65–92.  https://doi.org/10.1016/j.cpcardiol.2015.04.002.CrossRefGoogle Scholar
  42. 42.
    Napoli R, Biondi B, Guardasole V, Matarazzo M, Pardo F, Angelini V, et al. Impact of hyperthyroidism and its correction on vascular reactivity in humans. Circulation. 2001;104(25):3076–80.CrossRefGoogle Scholar
  43. 43.
    Kuzman JA, Gerdes AM, Kobayashi S, Liang Q. Thyroid hormone activates Akt and prevents serum starvation-induced cell death in neonatal rat cardiomyocytes. J Mol Cell Cardiol. 2005;39(5):841–4.  https://doi.org/10.1016/j.yjmcc.2005.07.019.CrossRefGoogle Scholar
  44. 44.
    Biondi B, Palmieri EA, Lombardi G, Fazio S. Effects of thyroid hormone on cardiac function: the relative importance of heart rate, loading conditions, and myocardial contractility in the regulation of cardiac performance in human hyperthyroidism. J Clin Endocrinol Metab. 2002;87(3):968–74.  https://doi.org/10.1210/jcem.87.3.8302.CrossRefGoogle Scholar
  45. 45.
    Kiss E, Jakab G, Kranias EG, Edes I. Thyroid hormone-induced alterations in phospholamban protein expression. Regulatory effects on sarcoplasmic reticulum Ca2+ transport and myocardial relaxation. Circ Res. 1994;75(2):245–51.CrossRefGoogle Scholar
  46. 46.
    Ladenson PW, Sherman SI, Baughman KL, Ray PE, Feldman AM. Reversible alterations in myocardial gene expression in a young man with dilated cardiomyopathy and hypothyroidism. Proc Natl Acad Sci U S A. 1992;89(12):5251–5.CrossRefGoogle Scholar
  47. 47.
    Bluhm WF, Meyer M, Sayen MR, Swanson EA, Dillmann WH. Overexpression of sarcoplasmic reticulum Ca(2+)-ATPase improves cardiac contractile function in hypothyroid mice. Cardiovasc Res. 1999;43(2):382–8.CrossRefGoogle Scholar
  48. 48.
    Arai M, Otsu K, MacLennan DH, Alpert NR, Periasamy M. Effect of thyroid hormone on the expression of mRNA encoding sarcoplasmic reticulum proteins. Circ Res. 1991;69(2):266–76.CrossRefGoogle Scholar
  49. 49.
    Kahaly GJ. Cardiovascular and atherogenic aspects of subclinical hypothyroidism. Thyroid. 2000;10(8):665–79.  https://doi.org/10.1089/10507250050137743.CrossRefGoogle Scholar
  50. 50.
    Biondi B, Cooper DS. The clinical significance of subclinical thyroid dysfunction. Endocr Rev. 2008;29(1):76–131.  https://doi.org/10.1210/er.2006-0043.CrossRefGoogle Scholar
  51. 51.
    Surks MI, Hollowell JG. Age-specific distribution of serum thyrotropin and antithyroid antibodies in the US population: implications for the prevalence of subclinical hypothyroidism. J Clin Endocrinol Metab. 2007;92(12):4575–82.  https://doi.org/10.1210/jc.2007-1499.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Gharib H, Tuttle RM, Baskin HJ, Fish LH, Singer PA, McDermott MT. Subclinical thyroid dysfunction: a joint statement on management from the American Association of Clinical Endocrinologists, the American Thyroid Association, and the Endocrine Society. J Clin Endocrinol Metab. 2005;90(1):581–5;. discussion 6–7.  https://doi.org/10.1210/jc.2004-1231.CrossRefGoogle Scholar
  53. 53.
    Biondi B, Fazio S, Palmieri EA, Carella C, Panza N, Cittadini A, et al. Left ventricular diastolic dysfunction in patients with subclinical hypothyroidism. J Clin Endocrinol Metab. 1999;84(6):2064–7.  https://doi.org/10.1210/jcem.84.6.5733.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Monzani F, Di Bello V, Caraccio N, Bertini A, Giorgi D, Giusti C, et al. Effect of levothyroxine on cardiac function and structure in subclinical hypothyroidism: a double blind, placebo-controlled study. J Clin Endocrinol Metab. 2001;86(3):1110–5.  https://doi.org/10.1210/jcem.86.3.7291.CrossRefGoogle Scholar
  55. 55.
    Ripoli A, Pingitore A, Favilli B, Bottoni A, Turchi S, Osman NF, et al. Does subclinical hypothyroidism affect cardiac pump performance? Evidence from a magnetic resonance imaging study. J Am Coll Cardiol. 2005;45(3):439–45.  https://doi.org/10.1016/j.jacc.2004.10.044.CrossRefGoogle Scholar
  56. 56.
    Forfar JC, Wathen CG, Todd WT, Bell GM, Hannan WJ, Muir AL, et al. Left ventricular performance in subclinical hypothyroidism. Q J Med. 1985;57(224):857–65.PubMedGoogle Scholar
  57. 57.
    Brenta G, Mutti LA, Schnitman M, Fretes O, Perrone A, Matute ML. Assessment of left ventricular diastolic function by radionuclide ventriculography at rest and exercise in subclinical hypothyroidism, and its response to L-thyroxine therapy. Am J Cardiol. 2003;91(11):1327–30.CrossRefGoogle Scholar
  58. 58.
    Arem R, Rokey R, Kiefe C, Escalante DA, Rodriguez A. Cardiac systolic and diastolic function at rest and exercise in subclinical hypothyroidism: effect of thyroid hormone therapy. Thyroid. 1996;6(5):397–402.  https://doi.org/10.1089/thy.1996.6.397.CrossRefPubMedGoogle Scholar
  59. 59.
    Owen PJ, Rajiv C, Vinereanu D, Mathew T, Fraser AG, Lazarus JH. Subclinical hypothyroidism, arterial stiffness, and myocardial reserve. J Clin Endocrinol Metab. 2006;91(6):2126–32.  https://doi.org/10.1210/jc.2005-2108.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Ferrucci L, Cherubini A, Bandinelli S, Bartali B, Corsi A, Lauretani F, et al. Relationship of plasma polyunsaturated fatty acids to circulating inflammatory markers. J Clin Endocrinol Metab. 2006;91(2):439–46.  https://doi.org/10.1210/jc.2005-1303.CrossRefPubMedGoogle Scholar
  61. 61.
    Dardano A, Caraccio N, Monzani F. Evaluation of endothelial function in subclinical thyroid dysfunction. Thyroid. 2006;16(2):200–1.  https://doi.org/10.1089/thy.2006.16.200.CrossRefPubMedGoogle Scholar
  62. 62.
    Nagasaki T, Inaba M, Kumeda Y, Hiura Y, Yamada S, Shirakawa K, et al. Central pulse wave velocity is responsible for increased brachial-ankle pulse wave velocity in subclinical hypothyroidism. Clin Endocrinol. 2007;66(2):304–8.  https://doi.org/10.1111/j.1365-2265.2006.02730.x.CrossRefGoogle Scholar
  63. 63.
    Taddei S, Caraccio N, Virdis A, Dardano A, Versari D, Ghiadoni L, et al. Impaired endothelium-dependent vasodilatation in subclinical hypothyroidism: beneficial effect of levothyroxine therapy. J Clin Endocrinol Metab. 2003;88(8):3731–7.  https://doi.org/10.1210/jc.2003-030039.CrossRefGoogle Scholar
  64. 64.
    Monzani F, Caraccio N, Kozakowa M, Dardano A, Vittone F, Virdis A, et al. Effect of levothyroxine replacement on lipid profile and intima-media thickness in subclinical hypothyroidism: a double-blind, placebo- controlled study. J Clin Endocrinol Metab. 2004;89(5):2099–106.  https://doi.org/10.1210/jc.2003-031669.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Li L, Guo CY, Yang J, Jia EZ, Zhu TB, Wang LS, et al. Negative association between free triiodothyronine level and international normalized ratio in euthyroid subjects with acute myocardial infarction. Acta Pharmacol Sin. 2011;32(11):1351–6.  https://doi.org/10.1038/aps.2011.118.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Ozcan KS, Osmonov D, Toprak E, Gungor B, Tatlisu A, Ekmekci A, et al. Sick euthyroid syndrome is associated with poor prognosis in patients with ST segment elevation myocardial infarction undergoing primary percutaneous intervention. Cardiol J. 2014;21(3):238–44.  https://doi.org/10.5603/CJ.a2013.0108.CrossRefGoogle Scholar
  67. 67.
    Ertugrul O, Ahmet U, Asim E, Gulcin HE, Burak A, Murat A, et al. Prevalence of subclinical hypothyroidism among patients with acute myocardial infarction. ISRN Endocrinol. 2011;2011:810251.  https://doi.org/10.5402/2011/810251.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Iervasi G, Pingitore A, Landi P, Raciti M, Ripoli A, Scarlattini M, et al. Low-T3 syndrome: a strong prognostic predictor of death in patients with heart disease. Circulation. 2003;107(5):708–13.CrossRefGoogle Scholar
  69. 69.
    Frey A, Kroiss M, Berliner D, Seifert M, Allolio B, Guder G, et al. Prognostic impact of subclinical thyroid dysfunction in heart failure. Int J Cardiol. 2013;168(1):300–5.  https://doi.org/10.1016/j.ijcard.2012.09.064.CrossRefGoogle Scholar
  70. 70.
    Olivares EL, Marassi MP, Fortunato RS, da Silva AC, Costa-e-Sousa RH, Araujo IG, et al. Thyroid function disturbance and type 3 iodothyronine deiodinase induction after myocardial infarction in rats a time course study. Endocrinology. 2007;148(10):4786–92.  https://doi.org/10.1210/en.2007-0043.CrossRefGoogle Scholar
  71. 71.
    Van den Berghe G. Non-thyroidal illness in the ICU: a syndrome with different faces. Thyroid. 2014;24(10):1456–65.  https://doi.org/10.1089/thy.2014.0201.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    De Groot LJ. Dangerous dogmas in medicine: the nonthyroidal illness syndrome. J Clin Endocrinol Metab. 1999;84(1):151–64.  https://doi.org/10.1210/jcem.84.1.5364.CrossRefGoogle Scholar
  73. 73.
    Kimur T, Kotajima N, Kanda T, Kuwabara A, Fukumura Y, Kobayashi I. Correlation of circulating interleukin-10 with thyroid hormone in acute myocardial infarction. Res Commun Mol Pathol Pharmacol. 2001;110(1–2):53–8.Google Scholar
  74. 74.
    Zhang B, Peng W, Wang C, Li W, Xu Y. A low fT3 level as a prognostic marker in patients with acute myocardial infarctions. Intern Med. 2012;51(21):3009–15.CrossRefGoogle Scholar
  75. 75.
    Friberg L, Drvota V, Bjelak AH, Eggertsen G, Ahnve S. Association between increased levels of reverse triiodothyronine and mortality after acute myocardial infarction. Am J Med. 2001;111(9):699–703.CrossRefGoogle Scholar
  76. 76.
    Ceremuzynski L, Gorecki A, Czerwosz L, Chamiec T, Bartoszewicz Z, Herbaczynska-Cedro K. Low serum triiodothyronine in acute myocardial infarction indicates major heart injury. Kardiol Pol. 2004;60(5):468–80. discussion 73–4Google Scholar
  77. 77.
    Kim DH, Choi DH, Kim HW, Choi SW, Kim BB, Chung JW, et al. Prediction of infarct severity from triiodothyronine levels in patients with ST-elevation myocardial infarction. Korean J Intern Med. 2014;29(4):454–65.  https://doi.org/10.3904/kjim.2014.29.4.454.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Lymvaios I, Mourouzis I, Cokkinos DV, Dimopoulos MA, Toumanidis ST, Pantos C. Thyroid hormone and recovery of cardiac function in patients with acute myocardial infarction: a strong association? Eur J Endocrinol. 2011;165(1):107–14.  https://doi.org/10.1530/eje-11-0062.CrossRefGoogle Scholar
  79. 79.
    Rajagopalan V, Zhang Y, Ojamaa K, Chen YF, Pingitore A, Pol CJ, et al. Safe oral triiodo-L-thyronine therapy protects from post-infarct cardiac dysfunction and arrhythmias without cardiovascular adverse effects. PLoS One. 2016;11(3):e0151413.  https://doi.org/10.1371/journal.pone.0151413.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Rajagopalan V, Zhang Y, Pol C, Costello C, Seitter S, Lehto A, et al. Modified low-dose triiodo-L-thyronine therapy safely improves function following myocardial ischemia-reperfusion injury. Front Physiol. 2017;8:225.  https://doi.org/10.3389/fphys.2017.00225.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Cardiology, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular DiseasesFuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina

Personalised recommendations