Advertisement

Thyroid Dysfunction and Cardiovascular Disease in Chronic Kidney Disease

  • Carmine Zoccali
  • Francesca Mallamaci
Chapter
  • 38 Downloads

Abstract

Chronic renal insufficiency alters thyroid hormone synthesis, distribution, and elimination and disturbs central (hypothalamo-pituitary) control of thyroid function. About one out five patients with a GFR < 60 mL/min/1.73 m2 shows subclinical or clinical hypothyroidism. Inflammation is a relevant player in the low T3 levels, which is the most frequent alteration in thyroid function in chronic kidney disease (CKD). There is still no definitive experimental proof that thyroid dysfunction is causally implicated in the high risk for death and cardiovascular events in this condition. Observational studies point to thyroid dysfunction as a relevant player in cardiomyopathy and the high risk of death and cardiovascular events of CKD patients. Mechanistic studies and exploratory intervention trials testing upstream pathways regulating thyroid hormone in CKD patients are needed to assess the nature of the association between thyroid dysfunction and clinical outcomes unraveled by observational studies in this very high risk population.

Keywords

Thyroid dysfunction Low T3 Subclinical hypothyroidism Chronic kidney disease (CKD) Dialysis Hemodialysis Cardiovascular risk Mortality LVH LV dysfunction 

References

  1. 1.
    Bianco AC, da Conceição RR. The deiodinase trio and thyroid hormone signaling. Methods Mol Biol. 2018;1801:67–83.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Zoccali C, Tripepi G, Cutrupi S, Pizzini P, Mallamaci F. Low triiodothyronine: a new facet of inflammation in end-stage renal disease. J Am Soc Nephrol. 2005;16:2789–95.PubMedCrossRefGoogle Scholar
  3. 3.
    Enia G, Panuccio V, Cutrupi S, Pizzini P, Tripepi G, Mallamaci F, Zoccali C. Subclinical hypothyroidism is linked to micro-inflammation and predicts death in continuous ambulatory peritoneal dialysis. Nephrol Dial Transplant. 2007;22:538–44.PubMedCrossRefGoogle Scholar
  4. 4.
    Zoccali C, Mallamaci F. Thyroid function and clinical outcomes in kidney failure. Clin J Am Soc Nephrol. 2012;7:12–4.PubMedCrossRefGoogle Scholar
  5. 5.
    Kaptein EM, Quion-Verde H, Chooljian CJ, Tang WW, Friedman PE, Rodriquez HJ, Massry SG. The thyroid in end-stage renal disease. Medicine (Baltimore). 1988;67:187–97.CrossRefGoogle Scholar
  6. 6.
    Disthabanchong S, Treeruttanawanich A. Oral sodium bicarbonate improves thyroid function in predialysis chronic kidney disease. Am J Nephrol. 2010;32:549–56.PubMedCrossRefGoogle Scholar
  7. 7.
    Wiederkehr MR, Kalogiros J, Krapf R. Correction of metabolic acidosis improves thyroid and growth hormone axes in haemodialysis patients. Nephrol Dial Transplant. 2004;19:1190–7.PubMedCrossRefGoogle Scholar
  8. 8.
    Spaulding SW, Gregerman RI. Free thyroxine in serum by equilibrium dialysis: effects of dilution, specific ions and inhibitors of binding. J Clin Endocrinol Metab. 1972;34:974–82.PubMedCrossRefGoogle Scholar
  9. 9.
    Santos GM, Pantoja CJ, Costa E, Silva A, Rodrigues MC, Ribeiro RC, Simeoni LA, Lomri N, Neves FA. Thyroid hormone receptor binding to DNA and T3-dependent transcriptional activation are inhibited by uremic toxins. Nucl Recept. 2005;3:1.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Lim VS, Flanigan MJ, Zavala DC, Freeman RM. Protective adaptation of low serum triiodothyronine in patients with chronic renal failure. Kidney Int. 1985;28:541–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Czernichow P, Dauzet MC, Broyer M, Rappaport R. Abnormal TSH, PRL and GH response to TSH releasing factor in chronic renal failure. J Clin Endocrinol Metab. 1976;43:630–7.PubMedCrossRefGoogle Scholar
  12. 12.
    Duntas L, Wolf CF, Keck FS, Rosenthal J. Thyrotropin-releasing hormone: pharmacokinetic and pharmacodynamic properties in chronic renal failure. Clin Nephrol. 1992;38:214–8.PubMedGoogle Scholar
  13. 13.
    Wheatley T, Clark PM, Clark JD, Holder R, Raggatt PR, Evans DB. Abnormalities of thyrotrophin (TSH) evening rise and pulsatile release in haemodialysis patients: evidence for hypothalamic-pituitary changes in chronic renal failure. Clin Endocrinol (Oxf). 1989;31:39–50.CrossRefGoogle Scholar
  14. 14.
    Spector DA, Davis PJ, Helderman JH, Bell B, Utiger RD. Thyroid function and metabolic state in chronic renal failure. Ann Intern Med. 1976;85:724–30.PubMedCrossRefGoogle Scholar
  15. 15.
    Song SH, Kwak IS, Lee DW, Kang YH, Seong EY, Park JS. The prevalence of low triiodothyronine according to the stage of chronic kidney disease in subjects with a normal thyroid-stimulating hormone. Nephrol Dial Transplant. 2009;24:1534–8.PubMedCrossRefGoogle Scholar
  16. 16.
    Rhee CM, Brent GA, Kovesdy CP, Soldin OP, Nguyen D, Budoff MJ, Brunelli SM, Kalantar-Zadeh K. Thyroid functional disease: an under-recognized cardiovascular risk factor in kidney disease patients. Nephrol Dial Transplant. 2015;30:724–37.PubMedCrossRefGoogle Scholar
  17. 17.
    Schultheiss UT, Daya N, Grams ME, Seufert J, Steffes M, Coresh J, Selvin E, Köttgen A. Thyroid function, reduced kidney function and incident chronic kidney disease in a community-based population: the atherosclerosis risk in communities study. Nephrol Dial Transplant. 2017;32:1874–81.PubMedGoogle Scholar
  18. 18.
    Chaker L, Sedaghat S, Hoorn EJ, Elzen WP, Gussekloo J, Hofman A, Ikram MA, Franco OH, Dehghan A, Peeters RP. The association of thyroid function and the risk of kidney function decline: a population-based cohort study. Eur J Endocrinol. 2016;175:653–60.PubMedCrossRefGoogle Scholar
  19. 19.
    Meuwese CL, van Diepen M, Cappola AR, et al. Low thyroid function is not associated with an accelerated deterioration in renal function. Nephrol Dial Transplant. 2018;34:650.  https://doi.org/10.1093/ndt/gfy071.CrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    Lo JC, Chertow GM, Go AS, Hsu C-Y. Increased prevalence of subclinical and clinical hypothyroidism in persons with chronic kidney disease. Kidney Int. 2005;67:1047–52.PubMedCrossRefGoogle Scholar
  21. 21.
    Chonchol M, Lippi G, Salvagno G, Zoppini G, Muggeo M, Targher G. Prevalence of subclinical hypothyroidism in patients with chronic kidney disease. Clin J Am Soc Nephrol. 2008;3:1296–300.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Fan J, Yan P, Wang Y, Shen B, Ding F, Liu Y. Prevalence and clinical significance of low T3 syndrome in non-Dialysis patients with chronic kidney disease. Med Sci Monit. 2016;22:1171–9.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Chandra A. Prevalence of hypothyroidism in patients with chronic kidney disease: a cross-sectional study from North India. Kidney Res Clin Pract. 2016;35:165–8.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Rhee CM, Alexander EK, Bhan I, Brunelli SM. Hypothyroidism and mortality among Dialysis patients. Clin J Am Soc Nephrol. 2013;8:593–601.PubMedCrossRefGoogle Scholar
  25. 25.
    Jaroszyński AJ, Głowniak A, Chrapko B, Sodolski T, Małecka T, Widomska-Czekajska T, Książek A. Low-T3 syndrome and signal-averaged ECG in hemodialyzed patients. Physiol Res. 2005;54:521–6.PubMedGoogle Scholar
  26. 26.
    del Carmen Prado-Uribe M, Ventura M-J, Ávila-Díaz M, et al. La disminución de triyodotironina se asocia con la elevación del péptido natriurético cerebral N-terminal y con la mortalidad en pacientes en diálisis. Nefrología. 2017;37:598–607.CrossRefGoogle Scholar
  27. 27.
    Straub RH, Cutolo M, Buttgereit F, Pongratz G. Energy regulation and neuroendocrine-immune control in chronic inflammatory diseases. J Intern Med. 2010;267:543–60.PubMedCrossRefGoogle Scholar
  28. 28.
    Härle P, Möbius D, Carr DJJ, Schölmerich J, Straub RH. An opposing time-dependent immune-modulating effect of the sympathetic nervous system conferred by altering the cytokine profile in the local lymph nodes and spleen of mice with type II collagen-induced arthritis. Arthritis Rheum. 2005;52:1305–13.PubMedCrossRefGoogle Scholar
  29. 29.
    Schenk S, Saberi M, Olefsky JM. Insulin sensitivity: modulation by nutrients and inflammation. J Clin Invest. 2008;118:2992–3002.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Hotamisligil GS, Peraldi P, Budavari A, Ellis R, White MF, Spiegelman BM. IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha- and obesity-induced insulin resistance. Science. 1996;271:665–8.PubMedCrossRefGoogle Scholar
  31. 31.
    Senn JJ, Klover PJ, Nowak IA, Mooney RA. Interleukin-6 induces cellular insulin resistance in hepatocytes. Diabetes. 2002;51:3391–9.PubMedCrossRefGoogle Scholar
  32. 32.
    Yadav A, Kataria MA, Saini V, Yadav A. Role of leptin and adiponectin in insulin resistance. Clin Chim Acta. 2013;417:80–4.PubMedCrossRefGoogle Scholar
  33. 33.
    Muse ED, Obici S, Bhanot S, Monia BP, McKay RA, Rajala MW, Scherer PE, Rossetti L. Role of resistin in diet-induced hepatic insulin resistance. J Clin Invest. 2004;114:232–9.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Straub RH, Besedovsky HO. Integrated evolutionary, immunological, and neuroendocrine framework for the pathogenesis of chronic disabling inflammatory diseases. FASEB J. 2003;17:2176–83.PubMedCrossRefGoogle Scholar
  35. 35.
    Gupta J, Mitra N, Kanetsky PA, et al. Association between albuminuria, kidney function, and inflammatory biomarker profile in CKD in CRIC. Clin J Am Soc Nephrol. 2012;7:1938–46.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Mehrotra R, Westenfeld R, Christenson P, Budoff M, Ipp E, Takasu J, Gupta A, Norris K, Ketteler M, Adler S. Serum fetuin-A in nondialyzed patients with diabetic nephropathy: relationship with coronary artery calcification. Kidney Int. 2005;67:1070–7.PubMedCrossRefGoogle Scholar
  37. 37.
    Meuwese CL, Dekkers OM, Stenvinkel P, Dekker FW, Carrero JJ. Nonthyroidal illness and the cardiorenal syndrome. Nat Rev Nephrol. 2013;9:599–609.PubMedCrossRefGoogle Scholar
  38. 38.
    De Groot LJ. Dangerous Dogmas in medicine: the nonthyroidal illness syndrome. J Clin Endocrinol Metab. 1999;84:151–64.PubMedCrossRefGoogle Scholar
  39. 39.
    Abozenah H, Shoeb S, Sabry A, Ismail H. Relation between thyroid hormone concentration and serum levels of interleukin-6 and interleukin-10 in patients with nonthyroidal illness including chronic kidney disease. Iran J Kidney Dis. 2008;2:16–23.PubMedGoogle Scholar
  40. 40.
    Stouthard JM, van der Poll T, Endert E, Bakker PJ, Veenhof CH, Sauerwein HP, Romijn JA. Effects of acute and chronic interleukin-6 administration on thyroid hormone metabolism in humans. J Clin Endocrinol Metab. 1994;79:1342–6.PubMedGoogle Scholar
  41. 41.
    van der Poll T, Romijn JA, Wiersinga WM, Sauerwein HP. Tumor necrosis factor: a putative mediator of the sick euthyroid syndrome in man. J Clin Endocrinol Metab. 1990;71:1567–72.PubMedCrossRefGoogle Scholar
  42. 42.
    Gereben B, Zavacki AM, Ribich S, Kim BW, Huang SA, Simonides WS, Zeöld A, Bianco AC. Cellular and molecular basis of deiodinase-regulated thyroid hormone signaling. Endocr Rev. 2008;29:898–938.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Alrefaie Z, Awad H. Effect of vitamin D3 on thyroid function and de-iodinase 2 expression in diabetic rats. Arch Physiol Biochem. 2015;121:206–9.PubMedCrossRefGoogle Scholar
  44. 44.
    Xu G, Tu W, Qin S. The relationship between deiodinase activity and inflammatory responses under the stimulation of uremic toxins. J Transl Med. 2014;12:239.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Jabbar A, Pingitore A, Pearce SH, Zaman A, Iervasi G, Razvi S. Thyroid hormones and cardiovascular disease. Nat Rev Cardiol. 2017;14:39–55.PubMedCrossRefGoogle Scholar
  46. 46.
    Samuels HH, Tsai JS, Casanova J, Stanley F. Thyroid hormone action: in vitro characterization of solubilized nuclear receptors from rat liver and cultured GH1 cells. J Clin Invest. 1974;54:853–65.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Nakai A, Seino S, Sakurai A, Szilak I, Bell GI, DeGroot LJ. Characterization of a thyroid hormone receptor expressed in human kidney and other tissues. Proc Natl Acad Sci U S A. 1988;85:2781–5.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Cheng S-Y, Leonard JL, Davis PJ. Molecular aspects of thyroid hormone actions. Endocr Rev. 2010;31:139–70.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Kiss E, Jakab G, Kranias EG, Edes I. Thyroid hormone-induced alterations in phospholamban protein expression. Regulatory effects on sarcoplasmic reticulum Ca2+ transport and myocardial relaxation. Circ Res. 1994;75:245–51.PubMedCrossRefGoogle Scholar
  50. 50.
    Hoit BD, Khoury SF, Shao Y, Gabel M, Liggett SB, Walsh RA. Effects of thyroid hormone on cardiac beta-adrenergic responsiveness in conscious baboons. Circulation. 1997;96:592–8.PubMedCrossRefGoogle Scholar
  51. 51.
    Zoccali C, Mallamaci F, Tripepi G, Cutrupi S, Pizzini P. Low triiodothyronine and survival in end-stage renal disease. Kidney Int. 2006;70:523–8.PubMedCrossRefGoogle Scholar
  52. 52.
    Tatar E, Kircelli F, Asci G, et al. Associations of triiodothyronine levels with carotid atherosclerosis and arterial stiffness in hemodialysis patients. Clin J Am Soc Nephrol. 2011;6:2240–6.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Carrero JJ, Qureshi AR, Axelsson J, et al. Clinical and biochemical implications of low thyroid hormone levels (total and free forms) in euthyroid patients with chronic kidney disease. J Intern Med. 2007;262:690–701.PubMedCrossRefGoogle Scholar
  54. 54.
    Yilmaz MI, Sonmez A, Karaman M, et al. Low triiodothyronine alters flow-mediated vasodilatation in advanced nondiabetic kidney disease. Am J Nephrol. 2011;33:25–32.PubMedCrossRefGoogle Scholar
  55. 55.
    Afsar B, Yilmaz MI, Siriopol D, et al. Thyroid function and cardiovascular events in chronic kidney disease patients. J Nephrol. 2017;30:235–42.PubMedCrossRefGoogle Scholar
  56. 56.
    Yang JW, Han ST, Song SH, Kim MK, Kim JS, Choi SO, Han B-G. Serum T3 level can predict cardiovascular events and all-cause mortality rates in CKD patients with proteinuria. Ren Fail. 2012;34:364–72.PubMedCrossRefGoogle Scholar
  57. 57.
    Amann K, Breitbach M, Ritz E, Mall G. Myocyte/capillary mismatch in the heart of uremic patients. J Am Soc Nephrol. 1998;9:1018–22.PubMedGoogle Scholar
  58. 58.
    Segall L, Nistor I, Covic A. Heart failure in patients with chronic kidney disease: a systematic integrative review. Biomed Res Int. 2014;2014:937398.  https://doi.org/10.1155/2014/937398.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Zoccali C, Bolignano D, Mallamaci F. Left ventricular hypertrophy in chronic kidney disease. In: Turner NN, Lameire N, Goldsmith DJ, Winearls CG, Himmelfarb J, Remuzzi G, Bennet WG, de Broe ME, Chapman JR, Adrian Covic VJ, editors. Oxford textbook of clinical nephrology. 4th ed. Oxford: Oxford University Press; 2015. p. 837–52.CrossRefGoogle Scholar
  60. 60.
    Ioannou K, Stel VS, Dounousi E, Jager KJ, Papagianni A, Pappas K, Siamopoulos KC, Zoccali C, Tsakiris D. Inflammation, endothelial dysfunction and increased left ventricular mass in chronic kidney disease (CKD) patients: a longitudinal study. PLoS One. 2015;10:e0138461.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Wang AYM, Wang M, Woo J, Lam CWK, Lui SF, Li PKT, Sanderson JE. Inflammation, residual kidney function, and cardiac hypertrophy are interrelated and combine adversely to enhance mortality and cardiovascular death risk of peritoneal dialysis patients. J Am Soc Nephrol. 2004;15:2186–94.PubMedCrossRefGoogle Scholar
  62. 62.
    Erten Y, Tulmac M, Derici U, Pasaoglu H, Reis KA, Bali M, Arinsoy T, Cengel A, Sindel S. An association between inflammatory state and left ventricular hypertrophy in hemodialysis patients. Ren Fail. 2005;27:581–9.PubMedCrossRefGoogle Scholar
  63. 63.
    Zoccali C, Benedetto FA, Mallamaci F, et al. Fibrinogen, inflammation and concentric left ventricular hypertrophy in chronic renal failure. Eur J Clin Invest. 2003;33:561–6.PubMedCrossRefGoogle Scholar
  64. 64.
    Xu G, Yan Y, Liu Y. The cardiovascular disease risks of nonthyroidal illness syndrome and inflammatory responses on patients with chronic kidney disease: from the association to clinical prognosis. Cardiovasc Ther. 2014;32:257–63.PubMedCrossRefGoogle Scholar
  65. 65.
    Zoccali C, Benedetto F, Mallamaci F, Tripepi G, Cutrupi S, Pizzini P, Malatino LS, Bonanno G, Seminara G. Low triiodothyronine and cardiomyopathy in patients with end-stage renal disease. J Hypertens. 2006;24:2039–46.PubMedCrossRefGoogle Scholar
  66. 66.
    Parving H-H, Hansen JM, Nielsen SL, Rossing N, Munck O, Lassen NA. Mechanisms of edema formation in myxedema—increased protein extravasation and relatively slow lymphatic drainage. N Engl J Med. 1979;301:460–5.PubMedCrossRefGoogle Scholar
  67. 67.
    Monzani F, Di Bello V, Caraccio N, Bertini A, Giorgi D, Giusti C, Ferrannini E. Effect of levothyroxine on cardiac function and structure in subclinical hypothyroidism: a double blind, placebo-controlled study. J Clin Endocrinol Metab. 2001;86:1110–5.PubMedCrossRefGoogle Scholar
  68. 68.
    Harnett JD, Foley RN, Kent GM, Barre PE, Murray D, Parfrey PS. Congestive heart failure in dialysis patients: prevalence, incidence, prognosis and risk factors. Kidney Int. 1995;47:884–90.  https://doi.org/10.1038/ki.1995.132.CrossRefPubMedGoogle Scholar
  69. 69.
    Koo HM, Kim CH, Doh FM, et al. The impact of low triiodothyronine levels on mortality is mediated by malnutrition and cardiac dysfunction in incident hemodialysis patients. Eur J Endocrinol. 2013;169:409–19.PubMedCrossRefGoogle Scholar
  70. 70.
    Kang EW, Nam JY, Yoo T-H, Shin SK, Kang S-W, Han D-S, Han SH. Clinical implications of subclinical hypothyroidism in continuous ambulatory peritoneal dialysis patients. Am J Nephrol. 2008;28:908–13.PubMedCrossRefGoogle Scholar
  71. 71.
    You AS, Sim JJ, Kovesdy CP, Streja E, Nguyen DV, Brent GA, Kalantar-Zadeh K, Rhee CM. Association of thyroid status prior to transition to end-stage renal disease with early dialysis mortality. Nephrol Dial Transplant. 2018;34:2095–104.  https://doi.org/10.1093/ndt/gfy289.CrossRefPubMedCentralPubMedGoogle Scholar
  72. 72.
    Rhee CM, Kalantar-Zadeh K, Ravel V, Streja E, You AS, Brunelli SM, Nguyen DV, Brent GA, Kovesdy CP. Thyroid status and death risk in US veterans with chronic kidney disease. Mayo Clin Proc. 2018;93:573–85.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Rhee CM, You AS, Nguyen DV, Brunelli SM, Budoff MJ, Streja E, Nakata T, Kovesdy CP, Brent GA, Kalantar-Zadeh K. Thyroid status and mortality in a prospective hemodialysis cohort. J Clin Endocrinol Metab. 2017;102:1568–77.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Howard BV, Rossouw JE. Estrogens and cardiovascular disease risk revisited: the women’s health initiative. Curr Opin Lipidol. 2013;24:493–9.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Ridker PM, Everett BM, Thuren T, et al. Antiinflammatory therapy with Canakinumab for atherosclerotic disease. N Engl J Med. 2017;377:1119–31.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Ridker PM, MacFadyen JG, Glynn RJ, Koenig W, Libby P, Everett BM, Lefkowitz M, Thuren T, Cornel JH. Inhibition of interleukin-1β by Canakinumab and cardiovascular outcomes in patients with chronic kidney disease. J Am Coll Cardiol. 2018;71:2405–14.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Carmine Zoccali
    • 1
  • Francesca Mallamaci
    • 1
    • 2
  1. 1.IFC-CNR, Epidemiologia Clinica e Fisiopatologia delle Malattie Renali e dell’Ipertensione ArteriosaReggio CalabriaItaly
  2. 2.Unità Operativa di Nefrologia, Dialisi e Trapianto Renale Ospedali Riuniti and IBIM-CNRReggio CalabriaItaly

Personalised recommendations