Thyroid Hormone Abnormalities in Myocardial Infarction

  • Dimitrios Varvarousis
  • Stavros Chryssanthopoulos
  • Kali Polytarchou
  • Dennis V. CokkinosEmail author


The low T3 syndrome is characterized by low serum T3 and fT3 and normal T4, fT4, and TSH levels, in the absence of intrinsic thyroid disease and can be seen after an acute myocardial infarction in about 15–20% of cases. It is also seen in acute and chronic illness, sepsis, and after surgery, including cardiac, under cardiopulmonary bypass. It is caused by inflammation and cytokine action and increased ROS production, as well as altered deiodinase (DIO) activity (upregulation of DIO3 and downregulation of DIO1), which affect thyroid hormone action on the peripheral tissues. Thus, the actions of these hormones on the myocardium (contractility) and on peripheral vessels (vasodilation) are blunted. Low T3 levels after myocardial infarction are associated with a worse prognosis; however, the effectiveness of thyroid hormone supplementation is still under discussion, since only results from small trials after cardiac surgery and myocardial infarction are available.


Low T3 syndrome Acute myocardial infarction Cardioprotection Cardiac contractility Thyroid hormones Vasodilatation 


  1. 1.
    Klein I, Danzi S. Thyroid disease and the heart. Circulation. 2007;116:1725–35.CrossRefGoogle Scholar
  2. 2.
    Jabbar A, Pingitore A, Pearce SH, Zaman A, Iervasi G, Razvi S. Thyroid hormones and cardiovascular disease. Nat Rev Cardiol. 2017;14(1):39–55.CrossRefGoogle Scholar
  3. 3.
    Alevizaki M, Synetou M, Xynos K, Pappa T, Vemmos KN. Low triiodothyronine: a strong predictor of outcome in acute stroke patients. Eur J Clin Invest. 2007;37:651–7.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Angelousi AG, Karageorgopoulos DE, Kapaskelis AM, Falagas ME. Association between thyroid function tests at baseline and the outcome of patients with sepsis or septic shock: a systematic review. Eur J Endocrinol. 2011;164:147–55.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Longstreth WT Jr, Manowitz NR, DeGroot LJ, Siscovick DS, Mayor GH, Copass MK, et al. Plasma thyroid hormone profiles immediately following out-of-hospital cardiac arrest. Thyroid. 1996;6:649–53.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Ray DC, Macduff A, Drummond GB, Wilkinson E, Adams B, Beckett GJ. Endocrine measurements in survivors and non-survivors from critical illness. Intensive Care Med. 2002;28:1301–8.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Farwell AP. Nonthyroidal illness syndrome. Curr Opin Endocrinol Diabetes Obes. 2013;20:478–84.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Iervasi G, Pingitore A, Landi P, Raciti M, Ripoli A, Scarlattini M, et al. Low-T3 syndrome: a strong prognostic predictor of death in patients with heart disease. Circulation. 2003;107:708–13.Google Scholar
  9. 9.
    Wang B, Liu S, Li L, Yao Q, Song R, Shao X, et al. Non-thyroidal illness syndrome in patients with cardiovascular diseases: a systematic review and meta-analysis. Int J Cardiol. 2017;226:1–10.CrossRefGoogle Scholar
  10. 10.
    Franklyn JA, Gammage MD, Ramsden DB, Sheppard MC. Thyroid status in patients after acute myocardial infarction. Clin Sci. 1984;67:585–90.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Pavlou HN, Kliridis PA, Panagiotopoulos AA, Goritsas CP, Vassilakos PJ. Euthyroid sick syndrome in acute ischemic syndromes. Angiology. 2002;53:699–707.CrossRefGoogle Scholar
  12. 12.
    Eber B, Schumacher M, Langsteger W, Zweiker R, Fruhwald FM, Pokan R, et al. Changes in thyroid hormone parameters after acute myocardial infarction. Cardiology. 1995;86:152–6.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    AbdulazizQari F. Thyroid hormone profile in patients with acute coronary syndrome. Iran Red Crescent Med J. 2015;17:e26919.Google Scholar
  14. 14.
    Adawiyah J, Norasyikin AW, Mat NH, Shamsul AS, Azmi KN. The non-thyroidal illness syndrome in acute coronary syndrome is associated with increased cardiac morbidity and mortality. Heart Asia. 2010;2:11–4.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Wang WY, Tang YD, Yang M, Cui C, Mu M, Qian J, et al. Free triiodothyronine level indicates the degree of myocardial injury in patients with acute ST-elevation myocardial infarction. Chin Med J (Engl). 2013;126:3926–30.Google Scholar
  16. 16.
    Zhang B, Peng W, Wang C, Li W, Xu Y. A low fT3 level as a prognostic marker in patients with acute myocardial infarctions. Intern Med. 2012;51:3009–15.CrossRefGoogle Scholar
  17. 17.
    Friberg L, Drvota V, Bjelak AH, Eggertsen G, Ahnve S. Association between increased levels of reverse triiodothyronine and mortality after acute myocardial infarction. Am J Med. 2001;111:699–703.CrossRefGoogle Scholar
  18. 18.
    Ozcan KS, Osmonov D, Toprak E, Güngör B, Tatlısu A, Ekmekçi A, et al. Sick euthyroid syndrome is associated with poor prognosis in patients with ST segment elevation myocardial infarction undergoing primary percutaneous intervention. Cardiol J. 2014;21:238–44.CrossRefGoogle Scholar
  19. 19.
    Lazzeri C, Sori A, Picariello C, Chiostri M, Gensini GF, Valente S. Nonthyroidal illness syndrome in ST-elevation myocardial infarction treated with mechanical revascularization. Int J Cardiol. 2012;158:103–4.CrossRefGoogle Scholar
  20. 20.
    Molinaro S, Iervasi G, Lorenzoni V, Coceani M, Landi P, Srebot V, et al. Persistence of mortality risk in patients with acute cardiac diseases and mild thyroid dysfunction. Am J Med Sci. 2012;343(1):65–70.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Su W, Zhao XQ, Wang M, Chen H, Li HW. Low T3 syndrome improves risk prediction of in-hospital cardiovascular death in patients with acute myocardial infarction. J Cardiol. 2018;72(3):215–9.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Friberg L, Werner S, Eggertsen G, Ahnve S. Rapid down-regulation of thyroid hormones in acute myocardial infarction: is it cardioprotective in patients with angina? Arch Intern Med. 2002;162:1388–94.Google Scholar
  23. 23.
    Pimentel RC, Cardoso GP, Escosteguy CC, Abreu LM. Thyroid hormone profile in acute coronary syndromes. Arq Bras Cardiol. 2006;87:688–94.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Kim DH, Choi DH, Kim HW, Choi SW, Kim BB, Chung JW, et al. Prediction of infarct severity from triiodothyronine levels in patients with ST-elevation myocardial infarction. Korean J Intern Med. 2014;29:454–65.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Yazıcı S, Kırış T, Ceylan US, Terzi S, Erdem A, Atasoy I, et al. Relation of low T3 to one-year mortality in non–ST-elevation acute coronary syndrome patients. J Clin Lab Anal 2017;31(2).PubMedCentralCrossRefGoogle Scholar
  26. 26.
    Bentzon JF, Otsuka F, Virmani R, Falk E. Mechanisms of plaque formation and rupture. Circ Res. 2014;114:1852–66.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Warner MH, Beckett GJ. Mechanisms behind the non-thyroidal illness syndrome: an update. J Endocrinol. 2010;205:1–13.CrossRefGoogle Scholar
  28. 28.
    Iltumur K, Olmez G, Ariturk Z, Taskesen T, Toprak N. Clinical investigation: thyroid function test abnormalities in cardiac arrest associated with acute coronary syndrome. Crit Care. 2005;9:R416–24.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Pingitore A, Chen Y, Gerdes AM, Iervasi G. Acute myocardial infarction and thyroid function: new pathophysiological and therapeutic perspectives. Ann Med. 2012;44:745–57.CrossRefGoogle Scholar
  30. 30.
    Kimura T, Kanda T, Kotajima N, Kuwabara A, Fukumura Y, Kobayashi I. Involvement of circulating interleukin-6 and its receptor in the development of euthyroid sick syndrome in patients with acute myocardial infarction. Eur J Endocrinol. 2000;143:179–84.PubMedCrossRefGoogle Scholar
  31. 31.
    Corssmit EP, Heyligenberg R, Endert E, Sauerwein HP, Romijn JA. Acute effects of interferon-alpha administration on thyroid hormone metabolism in healthy men. J Clin Endocrinol Metab. 1995;80:3140–4.PubMedGoogle Scholar
  32. 32.
    Castro I, Quisenberry L, Calvo RM, Obregon MJ, Lado-Abeal J. Septic shock non-thyroidal illness syndrome causes hypothyroidism and conditions for reduced sensitivity to thyroid hormone. J Mol Endocrinol. 2013;50:255–66.PubMedCrossRefGoogle Scholar
  33. 33.
    Olivares EL, Marassi MP, Fortunato RS, da Silva AC, Costa-e-Sousa RH, Araújo IG, et al. Thyroid function disturbance and type 3 iodothyronine deiodinase induction after myocardial infarction in rats a time course study. Endocrinology. 2007;148:4786–92.CrossRefGoogle Scholar
  34. 34.
    Rondeel JM, Heide R, de Greef WJ, van Toor H, van Haasteren GA, Klootwijk W, et al. Effect of starvation and subsequent refeeding on thyroid function and release of hypothalamic thyrotropin-releasing hormone. Neuroendocrinology. 1992;56:348–53.PubMedCrossRefGoogle Scholar
  35. 35.
    Douyon L, Schteingart DE. Effect of obesity and starvation on thyroid hormone, growth hormone, and cortisol secretion. Endocrinol Metab Clin North Am. 2002;31:173–89.PubMedCrossRefGoogle Scholar
  36. 36.
    Janssen R, Muller A, Simonides WS. Cardiac thyroid hormone metabolism and heart failure. Eur Thyroid J. 2017;6:130–7.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Boelen A, Wiersinga WM, Fliers E. Fasting-induced changes in the hypothalamus-pituitary-thyroid axis. Thyroid. 2008;18:123–9.CrossRefGoogle Scholar
  38. 38.
    Boelen A, Kwakkel J, Fliers E. Beyond low plasma T3: local thyroid hormone metabolism during inflammation and infection. Endocr Rev. 2011;32:670–93.CrossRefGoogle Scholar
  39. 39.
    Wassen FW, Schiel AE, Kuiper GG, Kaptein E, Bakker O, Visser TJ, et al. Induction of thyroid hormone-degrading deiodinase in cardiac hypertrophy and failure. Endocrinology. 2002;143:2812–5.CrossRefGoogle Scholar
  40. 40.
    Buermans HP, Redout EM, Schiel AE, Musters RJ, Zuidwijk M, Eijk PP, et al. Microarray analysis reveals pivotal divergent mRNA expression profiles early in the development of either compensated ventricular hypertrophy or heart failure. Physiol Genomics. 2005;21:314–23.CrossRefGoogle Scholar
  41. 41.
    Simonides WS, Mulcahey MA, Redout EM, Muller A, Zuidwijk MJ, Visser TJ, et al. Hypoxia-inducible factor induces local thyroid hormone inactivation during hypoxic-ischemic disease in rats. J Clin Invest. 2008;118:975–83.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Weltman NY, Ojamaa K, Schlenker EH, Chen YF, Zucchi R, Saba A, et al. Low-dose T3 replacement restores depressed cardiac T3 levels, preserves coronary microvasculature and attenuates cardiac dysfunction in experimental diabetes mellitus. Mol Med. 2014;20:302–12.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Peeters RP, Wouters PJ, Kaptein E, van Toor H, Visser TJ, Van den Berghe G. Reduced activation and increased inactivation of thyroid hormone in tissues of critically ill patients. J Clin Endocrinol Metab. 2003;88:3202–11.CrossRefGoogle Scholar
  44. 44.
    Debaveye Y, Ellger B, Mebis L, Van Herck E, Coopmans W, Darras V, et al. Tissue deiodinase activity during prolonged critical illness: effects of exogenous thyrotropin-releasing hormone and its combination with growth hormone-releasing peptide-2. Endocrinology. 2005;146:5604–11.CrossRefGoogle Scholar
  45. 45.
    Kwakkel J, Wiersinga WM, Boelen A. Differential involvement of nuclear factor-kappaB and activator protein-1 pathways in the interleukin-1beta-mediated decrease of deiodinase type 1 and thyroid hormone receptor beta1 mRNA. J Endocrinol. 2006;189:37–44.CrossRefGoogle Scholar
  46. 46.
    Nagaya T, Fujieda M, Otsuka G, Yang JP, Okamoto T, Seo H. A potential role of activated NF-kappa B in the pathogenesis of euthyroid sick syndrome. J Clin Invest. 2000;106:393–402.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Van den Berghe G, de Zegher F, Baxter RC, Veldhuis JD, Wouters P, Schetz M, et al. Neuroendocrinology of prolonged critical illness: effects of exogenous thyrotropin-releasing hormone and its combination with growth hormone secretagogues. J Clin Endocrinol Metab. 1998;83:309–19.PubMedGoogle Scholar
  48. 48.
    Visser WE, van Mullem AA, Visser TJ, Peeters RP. Different causes of reduced sensitivity to thyroid hormone: diagnosis and clinical management. Clin Endocrinol (Oxf). 2013;79:595–605.Google Scholar
  49. 49.
    Oetting A, Yen PM. New insights into thyroid hormone action. Best Pract Res Clin Endocrinol Metab. 2007;21:193–208.PubMedCrossRefGoogle Scholar
  50. 50.
    Cheng SY, Leonard JL, Davis PJ. Molecular aspects of thyroid hormone actions. Endocr Rev. 2010;31:139–70.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Weinberger C, Thompson CC, Ong ES, Lebo R, Gruol DJ, Evans RM. The c-erb-A gene encodes a thyroid hormone receptor. Nature. 1986;324:641–6.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Sap J, Muñoz A, Damm K, Goldberg Y, Ghysdael J, Leutz A, et al. The c-erb-A protein is a high-affinity receptor for thyroid hormone. Nature. 1986;324:635–40.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Kumar R, Thompson EB. The structure of the nuclear hormone receptors. Steroids. 1999;64:310–9.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Dillmann W. Cardiac hypertrophy and thyroid hormone signaling. Heart Fail Rev. 2010;15:125–32.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Vinzio S, Morel O, Schlienger JL, Goichot B. [Cellular mechanisms of thyroid hormone action]. Presse Med. 2005;34:1147–52.Google Scholar
  56. 56.
    Pramfalk C, Pedrelli M, Parini P. Role of thyroid receptor β in lipid metabolism. Biochim Biophys Acta. 2011;1812:929–37.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Mitsuhashi T, Nikodem VM. Regulation of expression of the alternative mRNAs of the rat alpha-thyroid hormone receptor gene. J Biol Chem. 1989;264:8900–4.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Chassande O. Do unliganded thyroid hormone receptors have physiological functions? J Mol Endocrinol. 2003;31:9–20.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Williams GR. Cloning and characterization of two novel thyroid hormone receptor beta isoforms. Mol Cell Biol. 2000;20:8329–42.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Bassett JH, Harvey CB, Williams GR. Mechanisms of thyroid hormone receptor-specific nuclear and extra nuclear actions. Mol Cell Endocrinol. 2003;213:1–11.CrossRefGoogle Scholar
  61. 61.
    Pantos C, Mourouzis I, Xinaris C, Papadopoulou-Daifoti Z, Cokkinos D. Thyroid hormone and “cardiac metamorphosis”: potential therapeutic implications. Pharmacol Ther. 2008;118:277–94.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Gloss B, Trost S, Bluhm W, Swanson E, Clark R, Winkfein R, et al. Cardiac ion channel expression and contractile function in mice with deletion of thyroid hormone receptor alpha or beta. Endocrinology. 2001;142:544–50.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Flores-Morales A, Gullberg H, Fernandez L, Ståhlberg N, Lee NH, Vennström B, et al. Patterns of liver gene expression governed by TRbeta. Mol Endocrinol. 2002;16:1257–68.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Raparti G, Jain S, Ramteke K, Murthy M, Ghanghas R, Ramanand S, et al. Selective thyroid hormone receptor modulators. Indian J Endocrinol Metab. 2013;17:211–8.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Hammes SR, Davis PJ. Overlapping nongenomic and genomic actions of thyroid hormone and steroids. Best Pract Res Clin Endocrinol Metab. 2015;29:581–93.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Kahaly GJ, Dillmann WH. Thyroid hormone action in the heart. Endocr Rev. 2005;26:704–28.CrossRefGoogle Scholar
  67. 67.
    Harvey CB, Williams GR. Mechanism of thyroid hormone action. Thyroid. 2002;12:441–6.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    vanRooij E, Sutherland LB, Qi X, Richardson JA, Hill J, Olson EN. Control of stress-dependent cardiac growth and gene expression by a microRNA. Science. 2007;316:575–9.CrossRefGoogle Scholar
  69. 69.
    Davis PJ, Davis FB. Nongenomic actions of thyroid hormone on the heart. Thyroid. 2002;12:459–66.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Cokkinos DV, Pantos C. [Thyroid hormones and their action on the myocardium]. Bull Acad Natl Med. 2009;193:327–36.Google Scholar
  71. 71.
    Kavok NS, Krasilnikova OA, Babenko NA. Thyroxine signal transduction in liver cells involves phospholipase C and phospholipase D activation. Genomic independent action of thyroid hormone. BMC Cell Biol. 2001;2:5.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Liu Q, Clanachan AS, Lopaschuk GD. Acute effects of triiodothyronine on glucose and fatty acid metabolism during reperfusion of ischemic rat hearts. Am J Physiol. 1998;275:E392–9.PubMedPubMedCentralGoogle Scholar
  73. 73.
    Iordanidou A, Hadzopoulou-Cladaras M, Lazou A. Non-genomic effects of thyroid hormone in adult cardiac myocytes: relevance to gene expression and cell growth. Mol Cell Biochem. 2010;340:291–300.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Gerdes AM. Restoration of thyroid hormone balance: a game changer in the treatment of heart failure? Am J Physiol Heart Circ Physiol. 2015;308:H1–10.CrossRefGoogle Scholar
  75. 75.
    Balzan S, Del Carratore R, Nicolini G, Beffy P, Lubrano V, Forini F, et al. Proangiogenic effect of TSH in human microvascular endothelial cells through its membrane receptor. J Clin Endocrinol Metab. 2012;97:1763–70.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Colantuoni A, Marchiafava PL, Lapi D, Forini FS, Iervasi G. Effects of tetraiodothyronine and triiodothyronine on hamster cheek pouch microcirculation. Am J Physiol Heart Circ Physiol. 2005;288:H1931–6.CrossRefGoogle Scholar
  77. 77.
    Scanlan TS, Suchland KL, Hart ME, Chiellini G, Huang Y, Kruzich PJ, et al. 3-Iodothyronamine is an endogenous and rapid-acting derivative of thyroid hormone. Nat Med. 2004;10:638–42.CrossRefGoogle Scholar
  78. 78.
    Puymirat J, Etongue-Mayer P, Dussault JH. Thyroid hormones stabilize acetylcholinesterase mRNA in neuro-2A cells that overexpress the beta 1 thyroid receptor. J Biol Chem. 1995;270:30651–6.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Hiroi Y, Kim HH, Ying H, Furuya F, Huang Z, Simoncini T, et al. Rapid nongenomic actions of thyroid hormone. Proc Natl Acad Sci U S A. 2006;103:14104–9.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Rutherford JD, Vatner SF, Braunwald E. Adrenergic control of myocardial contractility in conscious hyperthyroid dogs. Am J Physiol. 1979;237:H590–6.PubMedPubMedCentralGoogle Scholar
  81. 81.
    Mintz G, Pizzarello R, Klein I. Enhanced left ventricular diastolic function in hyperthyroidism: noninvasive assessment and response to treatment. J Clin Endocrinol Metab. 1991;73:146–50.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Swynghedauw B. Molecular mechanisms of myocardial remodeling. Physiol Rev. 1999;79:215–62.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Carafoli E. Intracellular calcium homeostasis. Annu Rev Biochem. 1987;56:395–433.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Carr AN, Kranias EG. Thyroid hormone regulation of calcium cycling proteins. Thyroid. 2002;12:453–7.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    MacLennan DH, Kranias EG. Phospholamban: a crucial regulator of cardiac contractility. Nat Rev Mol Cell Biol. 2003;4:566–77.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Luo W, Grupp IL, Harrer J, Ponniah S, Grupp G, Duffy JJ, et al. Targeted ablation of the phospholamban gene is associated with markedly enhanced myocardial contractility and loss of beta-agonist stimulation. Circ Res. 1994;75:401–9.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Haghighi K, Sanoudou D, Kranias E. Calcium cycling circuits in cardiac physiology and pathophysiology. In: Cokkinos DV, editor. Introduction to translational cardiovascular research. Cham: Springer; 2015. p. 205–15.Google Scholar
  88. 88.
    Kreuzberg U, Theissen P, Schicha H, Schröder F, Mehlhorn U, de Vivie ER, et al. Single-channel activity and expression of atrial L-type Ca(2+) channels in patients with latent hyperthyroidism. Am J Physiol Heart Circ Physiol. 2000;278:H723–30.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Jiang M, Xu A, Tokmakejian S, Narayanan N. Thyroid hormone-induced overexpression of functional ryanodine receptors in the rabbit heart. Am J Physiol Heart Circ Physiol. 2000;278:H1429–38.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Brittsan AG, Kranias EG. Phospholamban and cardiac contractile function. J Mol Cell Cardiol. 2000;32:2131–9.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Pachucki J, Burmeister LA, Larsen PR. Thyroid hormone regulates hyperpolarization-activated cyclic nucleotide-gated channel (HCN2) mRNA in the rat heart. Circ Res. 1999;85:498–503.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Hartong R, Villarreal FJ, Giordano F, Hilal-Dandan R, McDonough PM, Dillmann WH. Phorbolmyristate acetate-induced hypertrophy of neonatal rat cardiac myocytes is associated with decreased sarcoplasmic reticulum Ca2+ ATPase (SERCA2) gene expression and calcium reuptake. J Mol Cell Cardiol. 1996;28:2467–77.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Dillman WH. Mechanism of action of thyroid hormone on the cardiac vascular system. In: Iervasi G, Pingitore A, editors. Thyroid and heart failure. Dordrecht: Springer; 2009.Google Scholar
  94. 94.
    Zwaveling J, Pfaffendorf M, van Zwieten PA. The direct effects of thyroid hormones on rat mesenteric resistance arteries. Fundam Clin Pharmacol. 1997;11:41–6.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Ojamaa K, Klemperer JD, Klein I. Acute effects of thyroid hormone on vascular smooth muscle. Thyroid. 1996;6:505–12.CrossRefGoogle Scholar
  96. 96.
    Mamiya S, Hagiwara M, Inoue S, Hidaka H. Thyroid hormones inhibit platelet function and myosin light chain kinase. J Biol Chem. 1989;264:8575–9.PubMedPubMedCentralGoogle Scholar
  97. 97.
    Owen PJ, Ying H, Lang D, Tomlinson D, Lewis MJ, Cheng SY, et al. Endothelial dysfunction in a murine model of thyroid hormone resistance. Eur J Clin Invest. 2007;37:390–5.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Pantos CI, Tzilalis V, Giannakakis S, Cokkinos DD, Tzeis SM, Malliopoulou V, et al. Phenylephrine induced aortic vasoconstriction is attenuated in hyperthyroid rats. Int Angiol. 2001;20:181–6.PubMedPubMedCentralGoogle Scholar
  99. 99.
    Danzi S, Klein I. Thyroid hormone and blood pressure regulation. Curr Hypertens Rep. 2003;5:513–20.CrossRefGoogle Scholar
  100. 100.
    Ortiz VD, de Castro AL, Campos C, Fernandes RO, Bonetto JHP, Siqueira R, et al. Effects of thyroid hormones on aortic tissue after myocardial infarction in rats. Eur J Pharmacol. 2016;791:788–93.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Feingold KR, Soued M, Adi S, Staprans I, Neese R, Shigenaga J, et al. Effect of interleukin-1 on lipid metabolism in the rat. Similarities to and differences from tumor necrosis factor. Arterioscler Thromb. 1991;11:495–500.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Hashizume M, Mihara M. IL-6 and lipid metabolism. Inflamm Regener. 2011;31:325–33.CrossRefGoogle Scholar
  103. 103.
    Gloss B, Villegas S, Villarreal FJ, Moriscot A, Dillmann WH. Thyroid hormone-induced stimulation of the sarcoplasmic reticulum Ca(2+) ATPase gene is inhibited by LIF and IL-6. Am J Physiol Endocrinol Metab. 2000;278:E738–43.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Mancini A, Di Segni C, Raimondo S, Olivieri G, Silvestrini A, Meucci E, et al. Thyroid hormones, oxidative stress, and inflammation. Mediat Inflamm. 2016;2016:6757154.CrossRefGoogle Scholar
  105. 105.
    Christ-Crain M, Morgenthaler NG, Meier C, Müller C, Nussbaumer C, Bergmann A, et al. Pro-A-type and N-terminal pro-B-type natriuretic peptides in different thyroid function states. Swiss Med Wkly. 2005;135:549–54.PubMedPubMedCentralGoogle Scholar
  106. 106.
    Kinugawa K, Minobe WA, Wood WM, Ridgway EC, Baxter JD, Ribeiro RC, et al. Signaling pathways responsible for fetal gene induction in the failing human heart: evidence for altered thyroid hormone receptor gene expression. Circulation. 2001;103:1089–94.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Belke DD, Gloss B, Swanson EA, Dillmann WH. Adeno-associated virus-mediated expression of thyroid hormone receptor isoforms-alpha1 and -beta1 improves contractile function in pressure overload-induced cardiac hypertrophy. Endocrinology. 2007;148:2870–7.CrossRefGoogle Scholar
  108. 108.
    Pantos C, Dritsas A, Mourouzis I, Dimopoulos A, Karatasakis G, Athanassopoulos G, et al. Thyroid hormone is a critical determinant of myocardial performance in patients with heart failure: potential therapeutic implications. Eur J Endocrinol. 2007;157:515–20.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Pantos C, Mourouzis I, Saranteas T, Paizis I, Xinaris C, Malliopoulou V, et al. Thyroid hormone receptors alpha1 and beta1 are downregulated in the post-infarcted rat heart: consequences on the response to ischaemia-reperfusion. Basic Res Cardiol. 2005;100:422–32.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Pingitore A, Iervasi G, Barison A, Prontera C, Pratali L, Emdin M, et al. Early activation of an altered thyroid hormone profile in asymptomatic or mildly symptomatic idiopathic left ventricular dysfunction. J Card Fail. 2006;12:520–6.CrossRefGoogle Scholar
  111. 111.
    Pingitore A, Nicolini G, Kusmic C, Iervasi G, Grigolini P, Forini F. Cardioprotection and thyroid hormones. Heart Fail Rev. 2016;21:391–9.CrossRefGoogle Scholar
  112. 112.
    Pfeffer MA. Left ventricular remodeling after acute myocardial infarction. Annu Rev Med. 1995;46:455–66.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Marín-García J. Thyroid hormone and myocardial mitochondrial biogenesis. Vascul Pharmacol. 2010;52:120–30.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Forini F, Ucciferri N, Kusmic C, Nicolini G, Cecchettini A, Rocchiccioli S, et al. Low T3 state is correlated with cardiac mitochondrial impairments after ischemia reperfusion injury: evidence from a proteomic approach. Int J Mol Sci. 2015;16:26687–705.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Peliciari-Garcia RA, Bargi-Souza P, Young ME, Nunes MT. Repercussions of hypo and hyperthyroidism on the heart circadian clock. Chronobiol Int. 2018;35:147–59.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Yao J, Eghbali M. Decreased collagen gene expression and absence of fibrosis in thyroid hormone-induced myocardial hypertrophy. Response of cardiac fibroblasts to thyroid hormone in vitro. Circ Res. 1992;71:831–9.CrossRefGoogle Scholar
  117. 117.
    Nicolini G, Pitto L, Kusmic C, Balzan S, Sabatino L, Iervasi G, et al. New insights into mechanisms of cardioprotection mediated by thyroid hormones. J Thyroid Res. 2013;2013:264387.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Mariani E, Ravaglia G, Forti P, Meneghetti A, Tarozzi A, Maioli F, et al. Vitamin D, thyroid hormones and muscle mass influence natural killer (NK) innate immunity in healthy nonagenarians and centenarians. Clin Exp Immunol. 1999;116:19–27.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Kmiec Z, Myśliwska J, Rachón D, Kotlarz G, Sworczak K, Myśliwski A. Natural killer activity and thyroid hormone levels in young and elderly persons. Gerontology. 2001;47:282–8.PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Janssen R, Zuidwijk MJ, Kuster DW, Muller A, Simonides WS. Thyroid hormone-regulated cardiac microRNAs are predicted to suppress pathological hypertrophic signaling. Front Endocrinol (Lausanne). 2014;5:171.Google Scholar
  121. 121.
    Belke DD, Gloss B, Hollander JM, Swanson EA, Duplain H, Dillmann WH. In vivo gene delivery of HSP70i by adenovirus and adeno-associated virus preserves contractile function in mouse heart following ischemia-reperfusion. Am J Physiol Heart Circ Physiol. 2006;291:H2905–10.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Huot J, Houle F, Spitz DR, Landry J. HSP27 phosphorylation-mediated resistance against actin fragmentation and cell death induced by oxidative stress. Cancer Res. 1996;56:273–9.PubMedGoogle Scholar
  123. 123.
    Rybin V, Steinberg SF. Thyroid hormone represses protein kinase C isoform expression and activity in rat cardiac myocytes. Circ Res. 1996;79:388–98.CrossRefGoogle Scholar
  124. 124.
    Ferreira JC, Brum PC, Mochly-Rosen D. βIIPKC and εPKC isozymes as potential pharmacological targets in cardiac hypertrophy and heart failure. J Mol Cell Cardiol. 2011;51:479–84.PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Pantos C, Malliopoulou VA, Mourouzis IS, Karamanoli EP, Paizis IA, Steimberg N, et al. Long-term thyroxine administration protects the heart in a pattern similar to ischemic preconditioning. Thyroid. 2002;12:325–9.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Pantos C, Mourouzis I, Markakis K, Dimopoulos A, Xinaris C, Kokkinos AD, et al. Thyroid hormone attenuates cardiac remodeling and improves hemodynamics early after acute myocardial infarction in rats. Eur J Cardiothorac Surg. 2007;32:333–9.CrossRefGoogle Scholar
  127. 127.
    Pantos C, Mourouzis I, Markakis K, Tsagoulis N, Panagiotou M, Cokkinos DV. Long-term thyroid hormone administration reshapes left ventricular chamber and improves cardiac function after myocardial infarction in rats. Basic Res Cardiol. 2008;103:308–18.CrossRefGoogle Scholar
  128. 128.
    Kalofoutis C, Mourouzis I, Galanopoulos G, Dimopoulos A, Perimenis P, Spanou D, et al. Thyroid hormone can favorably remodel the diabetic myocardium after acute myocardial infarction. Mol Cell Biochem. 2010;345:161–9.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Mourouzis I, Mantzouratou P, Galanopoulos G, Kostakou E, Roukounakis N, Kokkinos AD, et al. Dose-dependent effects of thyroid hormone on post-ischemic cardiac performance: potential involvement of Akt and ERK signalings. Mol Cell Biochem. 2012;363:235–43.CrossRefGoogle Scholar
  130. 130.
    Henderson KK, Danzi S, Paul JT, Leya G, Klein I, Samarel AM. Physiological replacement of T3 improves left ventricular function in an animal model of myocardial infarction-induced congestive heart failure. Circ Heart Fail. 2009;2:243–52.CrossRefGoogle Scholar
  131. 131.
    Chen YF, Weltman NY, Li X, Youmans S, Krause D, Gerdes AM. Improvement of left ventricular remodeling after myocardial infarction with eight weeks L-thyroxine treatment in rats. J Transl Med. 2013;11:40.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Nicolini G, Forini F, Kusmic C, Pitto L, Mariani L, Iervasi G. Early and short-term triiodothyronine supplementation prevents adverse postischemic cardiac remodeling: role of transforming growth factor-β1 and antifibrotic miRNA signaling. Mol Med. 2015;21:900–11.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Chen YF, Kobayashi S, Chen J, Redetzke RA, Said S, Liang Q, et al. Short term triiodo-L-thyronine treatment inhibits cardiac myocyte apoptosis in border area after myocardial infarction in rats. J Mol Cell Cardiol. 2008;44:180–7.CrossRefGoogle Scholar
  134. 134.
    Cokkinos DV, Pantos C. Type 1 diabetes impairs compensatory response after myocardial infarction; role of tissue hypothyroidism and effects of thyroid hormone administration. Bull Acad Natl Med. 2011;195:164–5.Google Scholar
  135. 135.
    Pantos C, Mourouzis I, Cokkinos DV. Thyroid hormone as a therapeutic option for treating ischaemic heart disease: from early reperfusion to late remodelling. Vascul Pharmacol. 2010;52:157–65.PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Pennock GD, Raya TE, Bahl JJ, Goldman S, Morkin E. Combination treatment with captopril and the thyroid hormone analogue 3,5-diiodothyropropionic acid: a new approach to improving left ventricular performance in heart failure. Circulation. 1993;88:1289–98.PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    Talukder MA, Yang F, Nishijima Y, Chen CA, Xie L, Mahamud SD, et al. Detrimental effects of thyroid hormone analog DITPA in the mouse heart: increased mortality with in vivo acute myocardial ischemia-reperfusion. Am J Physiol Heart Circ Physiol. 2011;300:H702–11.PubMedCrossRefPubMedCentralGoogle Scholar
  138. 138.
    Morkin E, Pennock GD, Spooner PH, Bahl JJ, Goldman S. Clinical and experimental studies on the use of 3,5-diiodothyropropionic acid, a thyroid hormone analogue, in heart failure. Thyroid. 2002;12:527–33.PubMedCrossRefPubMedCentralGoogle Scholar
  139. 139.
    Goldman S, McCarren M, Morkin E, Ladenson PW, Edson R, Warren S, et al. DITPA (3,5-Diiodothyropropionic acid), a thyroid hormone analog to treat heart failure: phase II trial veterans affairs cooperative study. Circulation. 2009;119:3093–100.CrossRefGoogle Scholar
  140. 140.
    Pereira N, Parisi A, Dec GW, Choo J, Hajjar R, Gordon PC. Myocardial stunning in hyperthyroidism. Clin Cardiol. 2000;23:298–300.PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Bouabdallaoui N, Mouquet F, Ennezat PV. Acute myocardial infarction with normal coronary arteries associated with subclinical Graves disease. Am J Emerg Med. 2013;31(12):1721.e1–2.CrossRefGoogle Scholar
  142. 142.
    Patanè S, Marte F, Di Bella G, Turiano G. Acute myocardial infarction and subclinical hyperthyroidism without significant coronary stenoses. Int J Cardiol. 2009;134:e135–7.PubMedCrossRefPubMedCentralGoogle Scholar
  143. 143.
    Dörr M, Robinson DM, Wallaschofski H, Schwahn C, John U, Felix SB, Völzke H. Low serum thyrotropin is associated with high plasma fibrinogen. J Clin Endocrinol Metab. 2006;91(2):530–4.PubMedCrossRefPubMedCentralGoogle Scholar
  144. 144.
    Lewandowski KC, Rechciński T, Krzemińska-Pakuła M, Lewiński A. Acute myocardial infarction as the first presentation of thyrotoxicosis in a 31-year old woman —case report. Thyroid Res. 2010;3:1.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Hama M, Abe M, Kawaguchi T, Ishida Y, Nosaka M, Kuninaka Y, et al. A case of myocardial infarction in a young female with subclinical hyperthyroidism. Int J Cardiol. 2012;158:e23–5.PubMedCrossRefPubMedCentralGoogle Scholar
  146. 146.
    Lee CP, Lee WL, Lai HC, Ting CT, Wang KY, Liu TJ. Recurrent vasodilator-refractory acute coronary syndrome as the exclusive manifestation of Graves disease. Am J Emerg Med. 2012;30(8):1656.e5–9.Google Scholar
  147. 147.
    Parle JV, Maisonneuve P, Sheppard MC, Boyle P, Franklyn JA. Prediction of all-cause and cardiovascular mortality in elderly people from one low serum thyrotropin result: a 10-year cohort study. Lancet. 2001;358(9285):861–5.PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Collet TH, Gussekloo J, Bauer DC, den Elzen WP, Cappola AR, Balmer P, et al.; Thyroid Studies Collaboration. Subclinical hyperthyroidism and the risk of coronary heart disease and mortality. Arch Intern Med. 2012;172:799–809.Google Scholar
  149. 149.
    Hollowell JG, Staehling NW, Flanders WD, Hannon WH, Gunter EW, Spencer CA, et al. Serum TSH, T(4), and thyroid antibodies in the United States population (1988 to 1994): National Health and Nutrition Examination Survey (NHANES III). J Clin Endocrinol Metab. 2002;87:489–99.PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Ertugrul O, Ahmet U, Asim E, Gulcin HE, Burak A, Murat A, et al. Prevalence of subclinical hypothyroidism among patients with acute myocardial infarction. ISRN Endocrinol. 2011;2011:810251.PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Iervasi G, Molinaro S, Landi P, Taddei MC, Galli E, Mariani F, L'Abbate A, Pingitore A. Association between increased mortality and mild thyroid dysfunction in cardiac patients. Arch Intern Med. 2007;167(14):1526–32.CrossRefGoogle Scholar
  152. 152.
    Razvi S, Weaver JU, Vanderpump MP, Pearce SH. The incidence of ischemic heart disease and mortality in people with subclinical hypothyroidism: reanalysis of the Whickham survey cohort. J Clin Endocrinol Metab. 2010;95(4):1734–40.PubMedCrossRefPubMedCentralGoogle Scholar
  153. 153.
    McQuade C, Skugor M, Brennan DM, Hoar B, Stevenson C, Hoogwerf BJ. Hypothyroidism and moderate subclinical hypothyroidism are associated with increased all-cause mortality independent of coronary heart disease risk factors: a PreCIS database study. Thyroid. 2011;21(8):837–43.PubMedCrossRefGoogle Scholar
  154. 154.
    Walsh JP, Bremner AP, Bulsara MK, O’Leary P, Leedman PJ, Feddema P, et al. Subclinical thyroid dysfunction as a risk factor for cardiovascular disease. Arch Intern Med. 2005;165(21):2467–72.PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Hak AE, Pols HA, Visser TJ, Drexhage HA, Hofman A, Witteman JC. Subclinical hypothyroidism is an independent risk factor for atherosclerosis and myocardial infarction in elderly women: the Rotterdam study. Ann Intern Med. 2000;132:270–8.CrossRefGoogle Scholar
  156. 156.
    Rodondi N, den Elzen WP, Bauer DC, Cappola AR, Razvi S, Walsh JP, et al.; Thyroid Studies Collaboration. Subclinical hypothyroidism and the risk of coronary heart disease and mortality. JAMA. 2010;304(12):1365–74.PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Ning Y, Cheng YJ, Liu LJ, Sara JD, Cao ZY, Zheng WP, et al. What is the association of hypothyroidism with risks of cardiovascular events and mortality? A meta-analysis of 55 cohort studies involving 1,898,314 participants. BMC Med. 2017;15(1):21.PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Rodondi N, Newman AB, Vittinghoff E, de Rekeneire N, Satterfield S, Harris TB, et al. Subclinical hypothyroidism and the risk of heart failure, other cardiovascular events, and death. Arch Intern Med. 2005;165(21):2460–6.CrossRefGoogle Scholar
  159. 159.
    Boekholdt SM, Titan SM, Wiersinga WM, Chatterjee K, Basart DC, Luben R, et al. Initial thyroid status and cardiovascular risk factors: the EPIC-Norfolk prospective population study. Clin Endocrinol (Oxf). 2010;72(3):404–10.PubMedCrossRefGoogle Scholar
  160. 160.
    Cappola AR, Fried LP, Arnold AM, Danese MD, Kuller LH, Burke GL, et al. Thyroid status, cardiovascular risk, and mortality in older adults. JAMA. 2006;295:1033–41.PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Asvold BO, Bjøro T, Platou C, Vatten LJ. Thyroid function and the risk of coronary heart disease: 12-year follow-up of the HUNT study in Norway. Clin Endocrinol (Oxf). 2012;77(6):911–7.CrossRefGoogle Scholar
  162. 162.
    Pasqualetti G, Tognini S, Polini A, Caraccio N, Monzani F. Subclinical hypothyroidism and heart failure risk in older people. Endocr Metab Immune Disord Drug Targets. 2013;13:13–21.PubMedCrossRefPubMedCentralGoogle Scholar
  163. 163.
    Gencer B, Collet TH, Virgini V, Bauer DC, Gussekloo J, Cappola AR, et al. Subclinical thyroid dysfunction and the risk of heart failure events: an individual participant data analysis from 6 prospective cohorts. Circulation. 2012;126:1040–9.CrossRefGoogle Scholar
  164. 164.
    Vadiveloo T, Donnan PT, Cochrane L, Leese GP. The thyroid epidemiology, audit, and research study (TEARS): the natural history of endogenous subclinical hyperthyroidism. J Clin Endocrinol Metab. 2011;96(1):E1–8.PubMedCrossRefPubMedCentralGoogle Scholar
  165. 165.
    Andersen MN, Olsen AM, Madsen JC, Faber J, Torp-Pedersen C, Gislason GH, et al. Levothyroxine substitution in patients with subclinical hypothyroidism and the risk of myocardial infarction and mortality. PLoS One. 2015;10(6):e0129793.PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Ibanez B, James S, Agewall S, Antunes MJ, Bucciarelli-Ducci C, Bueno H, et al.; ESC Scientific Document Group. 2017 ESC guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: the task force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J. 2018;39(2):119–77.Google Scholar
  167. 167.
    Chuang CP, Jong YS, Wu CY, Lo HM. Impact of triiodothyronine and N-terminal pro-B-type natriuretic peptide on the long-term survival of critically ill patients with acute heart failure. Am J Cardiol. 2014;113:845–50.CrossRefGoogle Scholar
  168. 168.
    Cerillo AG, Storti S, Kallushi E, Haxhiademi D, Miceli A, Murzi M, et al. The low triiodothyronine syndrome: a strong predictor of low cardiac output and death in patients undergoing coronary artery bypass grafting. Ann Thorac Surg. 2014;97:2089–95.CrossRefGoogle Scholar
  169. 169.
    Coceani M, Iervasi G, Pingitore A, Carpeggiani C, L’Abbate A. Thyroid hormone and coronary artery disease: from clinical correlations to prognostic implications. Clin Cardiol. 2009;32:380–5.PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Lymvaios I, Mourouzis I, Cokkinos DV, Dimopoulos MA, Toumanidis ST, Pantos C. Thyroid hormone and recovery of cardiac function in patients with acute myocardial infarction: a strong association? Eur J Endocrinol. 2011;165:107–14.CrossRefGoogle Scholar
  171. 171.
    Brozaitiene J, Mickuviene N, Podlipskyte A, Burkauskas J, Bunevicius R. Relationship and prognostic importance of thyroid hormone and N-terminal pro-B-type natriuretic peptide for patients after acute coronary syndromes: a longitudinal observational study. BMC Cardiovasc Disord. 2016;16:45.PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Jankauskienė E, Orda P, Barauskienė G, Mickuvienė N, Brožaitienė J, Vaškelytė JJ, et al. Relationship between left ventricular mechanics and low free triiodothyronine levels after myocardial infarction: a prospective study. Intern Emerg Med. 2016;11(3):391–8.PubMedCrossRefGoogle Scholar
  173. 173.
    Lamprou V, Varvarousis D, Polytarchou K, Varvarousi G, Xanthos T. The role of thyroid hormones in acute coronary syndromes: prognostic value of alterations in thyroid hormones. Clin Cardiol. 2017;40(8):528–33.PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Pantos C, Mourouzis I, Saranteas T, Brozou V, Galanopoulos G, Kostopanagiotou G, et al. Acute T3 treatment protects the heart against ischemia-reperfusion injury via TRα1 receptor. Mol Cell Biochem. 2011;353(1–2):235–41.CrossRefGoogle Scholar
  175. 175.
    Forini F, Kusmic C, Nicolini G, Mariani L, Zucchi R, Matteucci M, et al. Triiodothyronine prevents cardiac ischemia/reperfusion mitochondrial impairment and cell loss by regulating miR30a/p53 axis. Endocrinology. 2014;155(11):4581–90.PubMedPubMedCentralCrossRefGoogle Scholar
  176. 176.
    Rajagopalan V, Zhang Y, Ojamaa K, Chen YF, Pingitore A, Pol CJ, et al. Safe oral Triiodo-L-Thyronine therapy protects from post-infarct cardiac dysfunction and arrhythmias without cardiovascular adverse effects. PLoS One. 2016;11(3):e0151413.PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Moruzzi P, Doria E, Agostoni PG. Medium-term effectiveness of L-thyroxine treatment in idiopathic dilated cardiomyopathy. Am J Med. 1996;101(5):461–7.CrossRefGoogle Scholar
  178. 178.
    Hamilton MA, Stevenson LW, Fonarow GC, Steimle A, Goldhaber JI, Child JS, et al. Safety and hemodynamic effects of intravenous triiodothyronine in advanced congestive heart failure. Am J Cardiol. 1998;81(4):443–7.CrossRefGoogle Scholar
  179. 179.
    Ronald A, Dunning J. Does perioperative thyroxine have a role during adult cardiac surgery? Interact Cardiovasc Thorac Surg. 2006;5:166–78.PubMedCrossRefPubMedCentralGoogle Scholar
  180. 180.
    Ranasinghe AM, Quinn DW, Pagano D, Edwards N, Faroqui M, Graham TR, et al. Glucose-insulin-potassium and tri-iodothyronine individually improve hemodynamic performance and are associated with reduced troponin I release after on-pump coronary artery bypass grafting. Circulation. 2006;114(1 Suppl):I245–50.Google Scholar
  181. 181.
    Marwali EM, Boom CE, Sakidjan I, Santoso A, Fakhri D, Kartini A, et al. Oral triiodothyronine normalizes triiodothyronine levels after surgery for pediatric congenital heart disease. Pediatr Crit Care Med. 2013;14:701–8.PubMedCrossRefPubMedCentralGoogle Scholar
  182. 182.
    Jabbar A, Ingoe L, Pearce S, Zaman A, Razvi S. Thyroxine in acute myocardial infarction (ThyrAMI)—levothyroxine in subclinical hypothyroidism post-acute myocardial infarction: study protocol for a randomised controlled trial. Trials. 2015;16:115.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Dimitrios Varvarousis
    • 1
  • Stavros Chryssanthopoulos
    • 2
  • Kali Polytarchou
    • 3
  • Dennis V. Cokkinos
    • 2
    Email author
  1. 1.Second Department of CardiologyGeneral Hospital of Nikea-Piraeus ‘Agios Panteleimon’PiraeusGreece
  2. 2.Cardiology DepartmentBiomedical Research Foundation Academy of AthensAthensGreece
  3. 3.First Department of CardiologyEvagelismos General Hospital of AthensAthensGreece

Personalised recommendations