Advertisement

Monitoring the Environmental Quality of Marine Waters Through the Analysis of Biomineralization in Bivalve Shells

  • Iuliana MotrescuEmail author
  • Anca Elena Calistru
  • Gerard Jitareanu
  • Liviu Dan Miron
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 101)

Abstract

Bivalve shells, such as Mytilus, offer great potential as environmental proxies. Analysis of the biomineralization process with determination of elemental composition gives information about the quality of environment and reflects the possible safety issues related to mollusk consumption because high pollutant quantities in shells indicate high pollutants presence in the consumed parts. In this work we study the biomineralization process in some bivalve shells and identify the presence of pollutants such as Pb, U, and other heavy metals using scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDAX). Through the obtained results, this methodology proved to be very reliable and fast for this purpose. We also show a correlation of the biomineralization results with the environmental conditions where the shells developed, such as estimation of water temperature by the Sr/Ca ratios, all the results proving the ability of bivalve shells of providing information about the environment quality.

Keywords

Mytilus Environmental quality Environmental monitoring Biomineralization 

Notes

Acknowledgments

This work was supported by Joint Institute for Nuclear Research Grant (04-4-1121-2015/2020 RO-JINR item 34).

References

  1. 1.
    Rodolfo-Metalpa, R., Houlbreque, F., Tambutte, E., Boisson, F., Baggini, C., Patti, F.P., Jeffree, R., Fine, M., Foggo, A., Gattuso, J.-P., Hall-Spencer, J.M.: Coral and mollusk resistance to ocean acidification adversely affected by warming. Nat. Clim. Change 1, 308–312 (2011)CrossRefGoogle Scholar
  2. 2.
    Hubbard, F.H., Al-Dabbas, M.A.M., McManus, J.: Environmental influences on the shell mineralogy of Mytilus edulis. Geo. Mar. Lett. 1, 267–269 (1981)CrossRefGoogle Scholar
  3. 3.
    Fitzer, S.C., Zhu, W., Tanner, K.E., Phoenix, V.R., Kamenos, N.A., Cusack, M.: Ocean acidification alters the material properties of Mytilus edulis shells. J. R. Soc. Interface (103):20141227 (2014)Google Scholar
  4. 4.
    Boutgoin, B.P.: Mytilus edulis shell as bioindicator of lead pollution: considerations of bioavailability and variability. Mar. Ecol. Prog. Ser. 61, 253–262 (1990)CrossRefGoogle Scholar
  5. 5.
    Krzysztof, R.B., Szopa, K.: Morphological diversity of microstructures occurring in selected recent bivalve shells and their ecological implications. Contemp. Trends Geosci. 5(2), 104–112 (2016)CrossRefGoogle Scholar
  6. 6.
    Telesca, L., Michalek, K., Sanders, T., Peck, L.S., Thyrring, J., Harper, E.M.: Blue mussel shell shape plasticity and natural environments: a quantitative approach. Sci. Rep. 8, 2865 (2018)CrossRefGoogle Scholar
  7. 7.
    Innes, D.J., Bates, J.A.: Morphological variations of Mytilus edulis and Mytilus trossulus in eastern Newfoundland. Mar. Biol. 133, 691–699 (1999)CrossRefGoogle Scholar
  8. 8.
    Moschino, V., Bressan, M., Cavaleri, L., Da Ros, L.: Shell-shaped and morphometric variability in Mytilus galloprovinciallis from micro-tidal environments: responses to different hydrodynamic drivers. Mar. Ecol. 36(4), 1–14 (2015)CrossRefGoogle Scholar
  9. 9.
    Alunno-Bruscia, M., Bourget, E., Frechette, M.: Shell allomertry and length-mass-density relationships for Mytilus edulis in an experimental food-regulated situation. Mar. Ecol. Prog. Ser. 219, 177–188 (2001)CrossRefGoogle Scholar
  10. 10.
    Meldrum, F.C., Hyde, S.T.: Morphological influence of magnesium and organic additives on the precipitation of calcite. J. Cryst. Growth 231, 544–558 (2001)CrossRefGoogle Scholar
  11. 11.
    Sugawara, A., Kato, T.: Aragonite CaCO3 thin-film formation by cooperation of Mg2+ and organic polymer matrices. Chem. Commun. 487–488 (2000)Google Scholar
  12. 12.
    Rosenthal, Y., Boyle, E.A., Slowey, N.: Temperature control on the incorporation of magnesium, strontium, fluorine, and cadmium into benthic foraminiferal shells from Little Bahama Bank: Prospects for thermocline paleoceanography. Geochim. Cosmochim. Acta 61(17), 3633–3643 (1997)CrossRefGoogle Scholar
  13. 13.
    Wanamaker, A.D., Kreutz, K.J., Wilson, T., Borns Jr., H.W., Introne, D.S., Feindel, S.: Experimentally determined Mg/Ca and Sr/Ca ratios in juvenile bivalve calcite for Mytilus edulis: implications for paleotemperature reconstructions. Geo-Mar. Lett. 28(5–6), 359–368 (2008)CrossRefGoogle Scholar
  14. 14.
    Jacob, D.E., Soldati, A.L., Wirth, R., Huth, J., Wehrmeister, U., Hofmeister, W.: nanostructure, composition and mechanisms of bivalve shell growth. Geochim. Cosmochim. Acta 72, 5401–5415 (2008)CrossRefGoogle Scholar
  15. 15.
    Gao, P., Liao, Z., Wang, X., Bao, L., Fan, M., Li, X., Wu, C., Xia, S.: Layer-by-layer proteomic analysis of Mytilus galloprovincialis shell. PLoS ONE 10(7), e0133913 (2015)CrossRefGoogle Scholar
  16. 16.
    Piwoni-Piorewicz, A., Kuklinski, P., Strekopytov, S., Humphreys-Williams, E., Najorka, J., Iglikowska, A.: Size effect on the mineralogy and chemistry of Mytilus trossulus shells from the southern Baltic Sea: implications for environmental monitoring. Environ. Monit. Assess 189, 197 (2017)CrossRefGoogle Scholar
  17. 17.
    Vander Putten, E., Dehairs, F., Keppens, E., Baeyens, W.: High resolution distribution of trace elements in the calcite shell layer of modern Mytilus edulis: environmental and biological controls. Geochim. Cosmochim. Acta 64, 997–1011 (2000)CrossRefGoogle Scholar
  18. 18.
    Yigit, M., Celikkol, B., Yimaz, S., Bulut, M., Ozalp, B., Dwyer, R., Maita, M., Kizilkaya, B., Yigit, U., Ergun, S., Gurses, K., Buyukates, Y.: Bioaccumulation of trace metals in Mediterranean mussels (Mytilus galloprovincialis) from fish farm with copper-alloy meh pens and potential risk assessment. Hum. Ecol. Risk Assess. 24(2), 465–481 (2018)CrossRefGoogle Scholar
  19. 19.
    Jovic, M., Onjia, A., Stankovic, S.: Toxic metal health risk by mussel consumption. Environ. Chem. Lett. 10(1), 69–77 (2012)CrossRefGoogle Scholar
  20. 20.
    Tanaskovki, B., Jovic, M., Mandic, M., Pezo, L., Degetto, S., Stankovic, S.: Elemental analysis of mussels and possible health risks arising from their consumption as a food: the case of Boka Kotorska Bay, Adriatic Sea. Ecotoxicol. Environ. Saf. 130, 65–73 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Science DepartmentUniversity of Agricultural Sciences and Veterinary Medicine of IasiIasiRomania
  2. 2.Research Institute for Agriculture and EnvironmentUniversity of Agricultural Sciences and Veterinary Medicine of IasiIasiRomania
  3. 3.Pedotechnics DepartmentUniversity of Agricultural Sciences and Veterinary Medicine of IasiIasiRomania
  4. 4.Clinics DepartmentUniversity of Agricultural Sciences and Veterinary Medicine of IasiIasiRomania

Personalised recommendations