Advertisement

Development of Plasma Driven Permeation Measurement System for Plasma Facing Materials

  • Mingzhong ZhaoEmail author
  • Shota Yamazaki
  • Moeko Nakata
  • Fei Sun
  • Takuro Wada
  • Ayaka Koike
  • Yoji Someya
  • Kenji Tobita
  • Yasuhisa Oya
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 101)

Abstract

To study the hydrogen isotopes plasma driven permeation (PDP) behavior in plasma facing materials, a linear Radio Frequency (RF) plasma device has been constructed in the radiation controlled area at Shizuoka University. The deuterium (D) plasma is generated by injecting RF power with the frequency of 13.56 MHz through a copper antenna and confined by DC magnetic field. The sample is sealed by gold (Au) coated O-ring and one side (upstream side) of sample is exposed to the D plasma. The other side of sample, named as downstream side, is pumped out by a turbo molecular pump and a rotary pump. The permeated D through the sample is monitored by a quadrupole mass spectrometer (QMS) which is connected to the downstream chamber. Infrared heater is adopted to control the sample temperature. The PDP experiments under different plasma parameters show that the permeation process agrees with RD regime. The D recombination coefficient on upstream surface of W is obtained.

Keywords

Hydrogen isotopes Plasma driven permeation Tungsten 

References

  1. 1.
    Costley, A., Hugill, J., Buxton, P.: On the power and size of tokamak fusion pilot plants and reactors. Nucl. Fusion 55, 033001 (2015)CrossRefGoogle Scholar
  2. 2.
    Philipps, V.: Tungsten as material for plasma-facing components in fusion devices. J. Nucl. Mater. 415, S2 (2011)CrossRefGoogle Scholar
  3. 3.
    Frauenfelder, R.: Solution and diffusion of hydrogen in tungsten. J. Vac. Sci. Technol. 6, 388 (1969)CrossRefGoogle Scholar
  4. 4.
    Zakharov, A., Sharapov, V., Evko, E.: Hydrogen permeability of polycrystalline and monocrystalline molybdenum and tungsten. Mater. Sci. 9, 149 (1975)CrossRefGoogle Scholar
  5. 5.
    Uemura, Y., et al.: Effect of helium irradiation on deuterium permeation behavior in tungsten. J. Nucl. Mater. 490, 242 (2017)CrossRefGoogle Scholar
  6. 6.
    Lee, H., Markina, E., Ohtsuka, Y., Ueda, Y.: Deuterium ion-driven permeation in tungsten with different microstructures. Phys. Scripta 2011, 014045 (2011)CrossRefGoogle Scholar
  7. 7.
    Lee, H., Tanaka, H., Ohtsuka, Y., Ueda, Y.: Ion-driven permeation of deuterium through tungsten under simultaneous helium and deuterium irradiation. J. Nucl. Mater. 415, S696 (2011)CrossRefGoogle Scholar
  8. 8.
    Gasparyan, Y., Rasinski, M., Mayer, M., Pisarev, A., Roth, J.: Deuterium ion-driven permeation and bulk retention in tungsten. J. Nucl. Mater. 417, 540 (2011)CrossRefGoogle Scholar
  9. 9.
    Nguyen, T.H., Mori, S., Suzuki, M.: Hydrogen permeance and the effect of H2O and CO on the permeability of Pd0.75Ag0.25 membranes under gas-driven permeation and plasma-driven permeation. Chem. Eng. J. 155, 55 (2009)Google Scholar
  10. 10.
    Ishida, M., Lee, H., Ueda, Y.: The influence of neon or argon impurities on deuterium permeation in tungsten. J. Nucl. Mater. 463, 1062 (2015)CrossRefGoogle Scholar
  11. 11.
    Lee, H., Ishida, M., Ohtsuka, Y., Ueda, Y.: The influence of nitrogen on deuterium permeation through tungsten. Phys. Scripta 2014, 014021 (2014)CrossRefGoogle Scholar
  12. 12.
    Peng, H., Lee, H., Ohtsuka, Y., Ueda, Y.: Ion-driven permeation of deuterium in tungsten by deuterium and carbon-mixed ion irradiation. Phys. Scripta 2011, 014046 (2011)CrossRefGoogle Scholar
  13. 13.
    Joachim, R., Klaus, S.: Hydrogen in tungsten as plasma-facing material. Phys. Scripta 2011, 014031 (2011)Google Scholar
  14. 14.
    Amemiya, H.: Sheath formation criterion and ion flux for non-Maxwellian plasma. J. Phys. Soc. Jpn. 66, 1335 (1997)CrossRefGoogle Scholar
  15. 15.
    Barada, K.K., Chattopadhyay, P., Ghosh, J., Kumar, S., Saxena, Y.: A linear helicon plasma device with controllable magnetic field gradient. Rev. Sci. Instrum. 83, 063501 (2012)CrossRefGoogle Scholar
  16. 16.
    Hatano, Y., Nakamura, H., Furuya, H., Sugisaki, M.: Influence of surface impurities on plasma-driven permeation of deuterium through nickel. J. Vac. Sci. Technol. Vac. Surf. Films 16, 2078 (1998)CrossRefGoogle Scholar
  17. 17.
    Liu, H.-D., et al.: Deuterium plasma driven permeation behavior in a Chinese reduced activation martensitic/ferritic steel CLF-1. J. Nucl. Mater. 514, 109 (2019)CrossRefGoogle Scholar
  18. 18.
    Zhou, H., Hirooka, Y., Ashikawa, N., Muroga, T., Sagara, A.: Gas-and plasma-driven hydrogen permeation through a reduced activation ferritic steel alloy F82H. J. Nucl. Mater. 455, 470 (2014)CrossRefGoogle Scholar
  19. 19.
    Takagi, I., et al.: Deuterium recombination coefficients on tungsten exposed to RF plasma. J. Nucl. Mater. 417, 564 (2011)CrossRefGoogle Scholar
  20. 20.
    Anderl, R., et al.: Deuterium transport and trapping in polycrystalline tungsten. Fusion Technol. 21, 745 (1992)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Mingzhong Zhao
    • 1
    Email author
  • Shota Yamazaki
    • 2
  • Moeko Nakata
    • 2
  • Fei Sun
    • 3
  • Takuro Wada
    • 2
  • Ayaka Koike
    • 2
  • Yoji Someya
    • 4
  • Kenji Tobita
    • 4
  • Yasuhisa Oya
    • 2
  1. 1.Graduate School of Science and TechnologyShizuoka UniversityShizuokaJapan
  2. 2.Graduate School of Integrated Science and TechnologyShizuoka UniversityShizuokaJapan
  3. 3.Faculty of ScienceShizuoka UniversityShizuokaJapan
  4. 4.National Institutes for Quantum and Radiological Science and TechnologyAomoriJapan

Personalised recommendations