Melting Threshold and Thermal Conductivity of CdTe Under Pulsed Laser Irradiation

  • V. P. VeleschukEmail author
  • V. A. Gnatyuk
  • T. Aoki
  • Z. K. Vlasenko
  • S. N. Levytskyi
  • A. V. Shefer
  • A. G. Kuzmich
  • K. V. Dubyk
  • V. V. Kuryliuk
  • M. V. Isaiev
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 101)


The paper is devoted to the study of the features of CdTe surface treatment under laser irradiation with both different wavelengths (λ = 300–800 nm) and pulse durations (τp = 7 ns–1 ms). The thermal conductivity of the semi-insulating p-like CdTe semiconductor crystals was evaluated using the photoacoustic gas-microphone method. Simulations of the melting threshold were performed based on the three stage model of the laser induced excitation and relaxation. In particular, the following processes were considered in frames of the model: (i) rapid interband thermalization, (ii) nonradiative interband and (iii) nonradiative surface recombination. It was revealed that in the range of pulse durations from 7 ns to 1 μs, the melting threshold of the CdTe mainly depended on the absorption coefficient α(λ). For pulse durations longer than 1 μs the threshold started to depend also on the spectra of the reflectivity coefficient R(λ). The obtained results have been used for optimization of the laser-assisted techniques of surface processing and stimulated doping of CdTe crystals.


CdTe Melting threshold Photoacoustic method Pulsed laser irradiation 



This research was supported by the following research projects: “Laser pulsed photothermoacoustic formation of CdTe-based sensor structures with super-high resolution for radiation monitoring systems” (State Fund For Fundamental Research of Ukraine, grant number F85), “Features of photothermal and photoacoustic processes in low-dimensional silicon-based semiconductor systems” (Program of the Ministry of Education and Science of Ukraine, state registration number 0118U000242), “Development of Cd(Zn)Te-based X/gamma-ray detectors with high resolution for security and diagnostics instruments” (The 2019 Cooperative Research at Research Center of Biomedical Engineering, Japan, grant number 2022), “Development of perovskite single crystal X/gamma-ray detectors for environmental radioactive contamination monitoring” (The Short-term Recruitment Program of Foreign Experts in Anhui (APFEP, 2019, China), “Exploring novel perovskite single-crystal based gamma-ray detector for trace environmental radioactivity monitoring” (Program of the Joint Ukraine - The People’s Republic of China R&D Projects for the period of 2019–2020 adopted by the Ministry of Science and Technology of the People’s Republic of China, grant number CU03-15).


  1. 1.
    Wood, R.F., White, C.W., Young, R.T.: Pulsed laser processing of semiconductors. In: Semiconductors and Semimetals 23, 1st edn. Academic Press, (1984)Google Scholar
  2. 2.
    Misra, N., Xu, L., Rogers, M.S., Ko, S.H., Grigoropoulos, C.P.: Pulsed laser annealing of semiconductor structures for functional devices. Physica Status Solidi (c) 5(10), 3264–3270 (2008)CrossRefGoogle Scholar
  3. 3.
    Phillips, K.C., Gandhi, H.H., Mazur, E., Sundaram, S.K.: Ultrafast laser processing of materials: a review. Adv. Opt. Photon. 7(4), 684–712 (2015)CrossRefGoogle Scholar
  4. 4.
    Malinauskas, M., Žukauskas, A., Hasegawa, S., Hayasaki, Y., Mizeikis, V., Buividas, R., Juodkazis, S.: Ultrafast laser processing of materials: from science to industry. Light: Sci. Appl. 5, e16133-1–14 (2016)CrossRefGoogle Scholar
  5. 5.
    Burbelo, R., Andrusenko, D., Isaiev, M., Kuzmich, A.: Laser photoacoustic diagnostics of advanced materials with different structure and dimensions. Arch. Metall. Mater. 56(4), 1157–1162 (2011)CrossRefGoogle Scholar
  6. 6.
    Voitenko, K., Veleschuk, V., Isaiev, M., Kuzmich, A., Lyashenko, O., Melnychenko, M., Malyarenko, E., Zhelnakov, S., Lysenko, V., Burbelo, R.: Nonlinear laser ultrasound formation in silicon. AIP Adv. 6(10), 105306-1–6 (2017)CrossRefGoogle Scholar
  7. 7.
    Gnatyuk, V.A., Aoki, T., Nakanishi, Y., Hatanaka, Y.: Surface state of CdTe crystals irradiated by KrF excimer laser pulses near the melting threshold. Surf. Sci. 542(1–2), 142–149 (2003)CrossRefGoogle Scholar
  8. 8.
    Gnatyuk, V.A., Aoki, T., Hatanaka, Y., Vlasenko, O.I.: Metal-semiconductor interfaces in CdTe crystals and modification of their properties by laser pulses. Appl. Surf. Sci. 244(1–4), 528–532 (2005)CrossRefGoogle Scholar
  9. 9.
    Aoki, T., Gnatyuk, D.V., Odarych, V.A., Poperenko, L.V., Yurgelevych, I.V., Levytskyi, S.N.: Influence of nanosecond laser irradiation on optical properties of surface layers of CdTe crystals. Thin Solid Films 519(9), 2834–2837 (2011)CrossRefGoogle Scholar
  10. 10.
    Zelenska, K., Gnatyuk, D., Aoki, T.: Laser-based technique of formation of CdTe-metal diode structures for high energy radiation detectors. In: 2016 IEEE Nuclear Science Symposium, Medical Imaging Conference and Room-Temperature Semiconductor Detector Workshop (NSS/MIC/RTSD), Proceedings, pp. 8069953-1–3 (2017)Google Scholar
  11. 11.
    Gnatyuk, V.A., Levytskyi, S.N., Vlasenko, O.I., Aoki, T.: Formation of doped nano-layers in CdTe semiconductor crystals by laser irradiation with nanosecond pulses. J. Nanosci. and Nanotechnol. 1(2), 7–16 (2016)Google Scholar
  12. 12.
    Lishchuk, P., Andrusenko, D., Isaiev, M., Lysenko, V., Burbelo, R.: Investigation of thermal transport properties of porous silicon by photoacoustic technique. Int. J. Thermophys. 36(9), 2428–2433 (2015)CrossRefGoogle Scholar
  13. 13.
    Neimash, V., Shepelyavyi, P., Dovbeshko, G., Goushcha, A., Isaiev, M., Melnyk, V., Didukh O., Kuzmich A.: Nanocrystals growth control during laser annealing of Sn:(α-Si) composites. J. Nanomater., 7920238-1–8 (2016)CrossRefGoogle Scholar
  14. 14.
    Isaiev, M., Didukh, O., Nychyporuk, T., Timoshenko, V., Lysenko, V.: Anisotropic heat conduction in silicon nanowire network revealed by Raman scattering. Appl. Phys. Lett. 110(1), 011908-1–4 (2017)CrossRefGoogle Scholar
  15. 15.
    Lishchuk, P., Isaiev, M., Osminkina, L., Burbelo, R., Nychyporuk, T., Timoshenko, V.: Photoacoustic characterization of nanowire arrays formed by metal-assisted chemical etching of crystalline silicon substrates with different doping level. Physica E 107, 131–136 (2019)CrossRefGoogle Scholar
  16. 16.
    Rosencwaig, A., Gersho, A.: Theory of the photoacoustic effect with solids. J. Appl. Phys. 47, 64–69 (1976)CrossRefGoogle Scholar
  17. 17.
    Green, M.A.: Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficients. Sol. Energy Mater. Sol. Cells 92(11), 1305–1310 (2008)CrossRefGoogle Scholar
  18. 18.
    Veleshchuk, V.P., Vlasenko, O.I., Vlasenko, Z.K., Gnatyuk, V.A., Levytskyi, S.N.: Dependence of the CdTe melting threshold on the pulse duration and wavelength of laser radiation and the parameters of non-equilibrium charge carriers. Ukrainian J. Phys. 62(2), 159–165 (2017)CrossRefGoogle Scholar
  19. 19.
    Gnatyuk, V.A., Aoki, T., Gorodnychenko, O.S., Hatanaka, Y.: Solid-liquid phase transitions in CdTe crystals under pulsed laser irradiation. Appl. Phys. Lett. 83(18), 3704–3706 (2003)CrossRefGoogle Scholar
  20. 20.
    Kovalev, A.A., Zhvavyi, S.P., Zykov, G.L.: Dynamics of laser-induced phase transitions in cadmium telluride. Semiconductors 39(11), 1299–1303 (2005)CrossRefGoogle Scholar
  21. 21.
    Madelung, O.: Semiconductors: Data Handbook, 3rd edn. Springer, Berlin (2004)CrossRefGoogle Scholar
  22. 22.
    Isaiev, M., Kuryliuk, V., Kuzmich, A., Burbelo, R.: Photothermal transformation in heterogeneous semiconductors structures under its pulse laser irradiation: role of electron-hole diffusion. Arch. Metall. Mater. 58(4), 1351–1354 (2013)CrossRefGoogle Scholar
  23. 23.
    Meyer, J.R., Kruer, M.R., Bartoli, F.J.: Optical heating in semiconductors: Laser damage in Ge, Si, InSb, and GaAs. J. Appl. Phys. 51(10), 5513–5521 (1980)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • V. P. Veleschuk
    • 1
    Email author
  • V. A. Gnatyuk
    • 1
    • 2
  • T. Aoki
    • 2
  • Z. K. Vlasenko
    • 1
  • S. N. Levytskyi
    • 1
  • A. V. Shefer
    • 3
  • A. G. Kuzmich
    • 4
  • K. V. Dubyk
    • 4
  • V. V. Kuryliuk
    • 4
  • M. V. Isaiev
    • 4
    • 5
  1. 1.V.E. Lashkaryov Institute of Semiconductor Physics of the National Academy of Sciences of UkraineKyivUkraine
  2. 2.Research Institute of ElectronicsShizuoka UniversityHamamatsuJapan
  3. 3.Poltava National Technical Yuriy Kondratyuk UniversityPoltavaUkraine
  4. 4.Taras Shevchenko National University of KyivKievUkraine
  5. 5.Université de Lorraine, CNRS, LEMTA (UMR 7563)Vandoeuvre les NancyFrance

Personalised recommendations