Advertisement

False Beliefs and the Social Structure of Science: Some Models and Case Studies

  • Cailin O’ConnorEmail author
  • James Owen Weatherall
Chapter
  • 65 Downloads

Abstract

We use models and historical cases to try and understand some of the ways scientific beliefs can go wrong. In particular, we consider questions like: how do conformity and social trust influence the spread of beliefs? What is the ideal network structure for a scientific community? And how do industrial propagandists influence the progress of science, as well as public belief?

Keywords

Industrial propaganda Conformity Social trust Epistemology Zollman effect Polarization 

References

  1. Asch, S. E., & Guetzkow, H. (1951). Effects of group pressure upon the modification and distortion of judgments. In Groups, leadership, and men (pp. 222–236). Pittsburgh, PA: Carnegie Press.Google Scholar
  2. Bala, V., & Goyal, S. (1998). Learning from neighbours. The Review of Economic Studies, 65(3), 595–621.CrossRefGoogle Scholar
  3. Bond, R., & Smith, P. B. (1996). Culture and conformity: A meta-analysis of studies using Asch’s (1952b, 1956) line judgment task. Psychological Bulletin, 119(1), 111.CrossRefGoogle Scholar
  4. Borg, A., Frey, D., & Seselja, D. (2017). Examining network effects in an argumentative agent-based model of scientific inquiry. In International Workshop on Logic, Rationality and Interaction (pp. 391–406). Berlin, Heidelberg: Springer.CrossRefGoogle Scholar
  5. Bramson, A., Grim, P., Singer, D. J., Berger, W. J., Sack, G., Fisher, S., et al. (2017). Understanding polarization: Meanings, measures, and model evaluation. Philosophy of Science, 84(1), 115–159.CrossRefGoogle Scholar
  6. Frey, D., & Seselja, D. (2017a). Robustness and idealizations in agent-based models of scientific interaction. philsci-archive.pitt.edu/14508/.
  7. Frey, D., & Seselja, D. (2017b). What is the function of highly idealized agent-based models of scientific inquiry? https://journals.sagepub.com/doi/abs/10.1177/0048393118767085.
  8. Grundy, I., et al. (1999). Lady Mary Wortley Montagu. Oxford, NY: Clarendon Press.Google Scholar
  9. Holman, B., & Bruner, J. (2017). Experimentation by industrial selection. Philosophy of Science, 84(5), 1008–1019.CrossRefGoogle Scholar
  10. Holman, B., & Bruner, J. P. (2015). The problem of intransigently biased agents. Philosophy of Science, 82(5), 956–968.CrossRefGoogle Scholar
  11. Kidd, M., & Modlin, I. M. (1998). A century of helicobacter pylori. Digestion, 59(1), 1–15.CrossRefGoogle Scholar
  12. Kummerfeld, E., & Zollman, K. (2015). Conservatism and the scientific state of nature. The British Journal for the Philosophy of Science, 67(4), 1057–1076.CrossRefGoogle Scholar
  13. Lewandowsky, S., Pilditch, T. D., Madsen, J. K., Oreskes, N., James, S., & Risbey, J. S. (2019). Influence and seepage: An evidence-resistant minority can affect public opinion and scientific belief formation. Cognition, 188, 124–139.CrossRefGoogle Scholar
  14. Mayo-Wilson, C. (2014). The reliability of testimonial norms in scientific communities. Synthese, 191(1), 55–78.CrossRefGoogle Scholar
  15. Mayo-Wilson, C., Zollman, K., & Danks, D. (2011). The independence thesis: When individual and social epistemology diverge. Philosophy of Science, 78(4), 653–677.CrossRefGoogle Scholar
  16. Mohseni, A., & Williams, C. R. (2018). Truth and conformity on networks. Erkenntnis. 1–22 Google Scholar
  17. Moore, T. J. (1995). Deadly medicine: Why tens of thousands of heart patients died in America’s worst drug disaster. New York: Simon and Schuster.Google Scholar
  18. O’Connor, C., & Weatherall, J. O. (2018). Scientific polarization. European Journal for Philosophy of Science, 8(3), 855–875.CrossRefGoogle Scholar
  19. O’Connor, C., & Weatherall, J. O. (2019). The misinformation age: How false beliefs spread. New Haven, CT: Yale University Press.CrossRefGoogle Scholar
  20. Oreskes, N., & Conway, E. M. (2011). Merchants of doubt: How a handful of scientists obscured the truth on issues from tobacco smoke to global warming. New York: Bloomsbury Publishing.Google Scholar
  21. Palmer, E. D. (1954). Investigation of the gastric spirochetes of the human. Gastroenterology, 27, 218–220.CrossRefGoogle Scholar
  22. Rogers, E. M. (2010). Diffusion of innovations. New York: Simon and Schuster.Google Scholar
  23. Rosenstock, S., Justin Bruner, J., & O’Connor, C. (2017). In epistemic networks, is less really more? Philosophy of Science, 84(2), 234–252.CrossRefGoogle Scholar
  24. Weatherall, J. O., & O’Connor, C. (forthcoming). Conformity in scientific networks. Synthese.Google Scholar
  25. Weatherall, J. O., & O’Connor, C. (2018). Endogenous epistemic factionalization: A network epistemology approach. SSRN Electronic Journal.  https://doi.org/10.2139/ssrn.3304109
  26. Weatherall, J. O., O’Connor, C., & Bruner, J. (2018). How to beat science and influence people. British Journal for Philosophy of Science.  https://doi.org/10.1093/bjps/axy062
  27. Zollman, K. J. S. (2007). The communication structure of epistemic communities. Philosophy of Science, 74(5), 574–587.CrossRefGoogle Scholar
  28. Zollman, K. J. S. (2010a). Social structure and the effects of conformity. Synthese, 172(3), 317–340.CrossRefGoogle Scholar
  29. Zollman, K. J. S. (2010b). The epistemic benefit of transient diversity. Erkenntnis, 72(1), 17.CrossRefGoogle Scholar
  30. Zollman, K. J. S. (2013). Network epistemology: Communication in epistemic communities. Philosophy Compass, 8(1), 15–27.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2020

Authors and Affiliations

  1. 1.Logic and Philosophy of ScienceUniversity of California IrvineIrvineUSA

Personalised recommendations