Advertisement

Two Quantum Attack Algorithms Against NTRU When the Private Key and Plaintext Are Codified in Ternary Polynomials

  • El Hassane LaajiEmail author
  • Abdelmalek Azizi
  • Siham Ezzouak
Conference paper
Part of the Learning and Analytics in Intelligent Systems book series (LAIS, volume 7)

Abstract

Our cryptanalysis is focused on the NTRU second round candidate submitted to National Institute of Standards and Technology (NIST) competition. The NTRU domain is the ring \(\mathbf {R_q}=\mathbb {Z}_q[X]/\mathbf (X^n -1)\) with the private keys and the plaintext are codified in ternary polynomials, that means all their coefficients are in {−1, 0, 1}.

Our two quantum attack algorithms namely KA_NTRU and PA_NTRU, inspired from Grover’s Algorithm, targeted respectively to find Private Keys and Plaintext. To test the proposed algorithms, we create a test release named NTRU_Attacks that integrate the principal cryptographic functions and the two attacks functions. In the general case, the quantum algorithms can break a system of dimension n in \(2^{n/2}\) times.

Keywords

NTRU NewHope Lattice- based-cryptography Post quantum cryptography Grover’s algorithm 

References

  1. 1.
  2. 2.
    Chen, L., Jordan, S., Liu, Y.-K., Moody, D., Peralta, R., Perlner, R., Smith, D.: NISTIR 8105- Report on post-quantum cryptography. Tone – Avril (2016)Google Scholar
  3. 3.
    Chen, C., Danba, O., Hofstein, J., Hülsing, A., Rijneveld, J., Schanck, J, Schwabe, P., Whyte, W., Zhang, Z.: Algorithm specifications and supporting documentation, 30 March 2019Google Scholar
  4. 4.
    Chen, C., Danba, O., Hoffstein, J., Hülsing, A., Rijneveld, J., Schanck, J., Schwabe, P., Whyte, W., Zhang, Z.: NIST PQ submission: NTRUencrypt a lattice-based encryption algorithm. Brown University and Onboard security Wilmington USA (2017)Google Scholar
  5. 5.
    Hofstein, J., Pipher, J., Schanck, J.M., Silverman, J., Whyte, W., Zhang, Z.: Choosing Parameters for NTRUencrypt. Brouwn University USA, Security Innovation Wilmington USAGoogle Scholar
  6. 6.
    Albrecht, M., Deo, A., Paterson, K.: Cold boot attacks on ring and module LWE Keys under the NTT. Royal Holloway, University of LondonGoogle Scholar
  7. 7.
    Liu, Z.: FourQ2 on embedded devices with strong countermeasures against side-channel attacks. University of Waterloo, Canada (2017)Google Scholar
  8. 8.
    Fluhrer, S.: Quantum cryptanalysis of NTRU- cisco systems, 5 July 2015Google Scholar
  9. 9.
    Hofstein, J., Pipher, J., Silverman, J.: Introduction Mathematics and Cryptography, NTRU (1998)Google Scholar
  10. 10.
    Hartmann, M.: Ajtai-Dwork cryptosystem and other cryptosystems based on lattices. Universite de Zurich, 29 October 2015Google Scholar
  11. 11.
    Micciancio, D., Regev, O.: Lattice-based cryptography, 22 July 2008Google Scholar
  12. 12.
    Fleury, D.: Probabilités. Vibert prépa, pp. 44–45, March 1986Google Scholar
  13. 13.
    Wiliams, C.P.: Grover algorithm explorations in quantum computing. Springer (2011)Google Scholar
  14. 14.
    Albrecht, M., Curtis, B., Deo, A., Davidson, A., Player, R.: Estimate all the fLWE, NTRU schemes. Version, 2 May 2018Google Scholar
  15. 15.
    Peikert, C.: Lattice cryptography for the Internet, 16 July 2014CrossRefGoogle Scholar
  16. 16.
    Chen, Y., Nguyen, P.: BKZ 2.0. Better lattice security estimates. ENS Paris (2017)Google Scholar
  17. 17.
    El Mrabet, N.: Attaques par canaux caches. Université de Caen, France (2010)Google Scholar
  18. 18.
    Mamdikar, R., Kumar, V., Ghosh, D.: Enhancement of NTRU public key. National Institute of Technology, Durgapur (2013)Google Scholar
  19. 19.
    Laaji, H., Azizi, A., Ezzouak, S.: An improvement of NTRU-1024 performance by speeding-up polynomial multiplication. XKhwarizm, Mohammed First University, Morocco (2019)Google Scholar
  20. 20.
    Bernstein, D.J., Chuengstiansup, C., Lange, T., van Vredendaal, C.: NTRU Prime. Department of Computer Science- University of Illinois at Chicago, Chicago, USA (2016)Google Scholar
  21. 21.
    Laaji, H., Azizi, A., Ezzouak, S.: NTRU\(\_\)Attacks impelementation. https://drive.google.com/open?id=12sG3-KXnAoJ2fDA0fbPXlry66l99iifI
  22. 22.
    Alkim, E., Ducas, L., Poppelman, T., Schwabe, P.: Post-quantum key exchange,- New Hope. Department of Mathematics, Ege University, Turkey (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • El Hassane Laaji
    • 1
    Email author
  • Abdelmalek Azizi
    • 1
  • Siham Ezzouak
    • 2
  1. 1.Mohammed First UniversityOujdaMorocco
  2. 2.Sidi Mahammed Ben Abdellah University FesFesMorocco

Personalised recommendations