Advertisement

Grey Wolf Optimizer for Virtual Network Embedding in SDN-Enabled Cloud Environment

  • Abderrahim BouchairEmail author
  • Sid Ahmed Makhlouf
  • Yagoubi Belabbas
Conference paper
Part of the Learning and Analytics in Intelligent Systems book series (LAIS, volume 7)

Abstract

Network technologies are dealing with a massive urge to breakthrough the fundamental endorsements of networks. Software-Defined Networking (SDN) is taking the lead in cloud Data Centers (DCs) to ensure the resource management of many policy adaptations, regarding the performance of Network Virtualization (NV) that must find the appropriate hardware components to map either a Virtual Machine (VM) or a virtual link, which resume the general concept of Virtual Network Embedding (VNE). In this paper, a Grey Wolf Optimizer (GWO) is represented as an intelligent approach for solving the VNE problem in the cloud with SDN consolidation. It is a recent meta-heuristic with low complex processing. Our implementation is based on CloudSimSDN that is an extension from the CloudSim simulation tool. The results indicate that maximizing the utilization of localhost resources maintain a considerable amount of energy consumption and consequently will provide better policy management for physical DCs.

Keywords

Cloud computing Software-Defined Networking Virtual Network Embedding Swarm Intelligence Grey Wolf Optimizer Resource utilization CloudSimSDN 

References

  1. 1.
    SDN-definition. https://www.opennetworking.org/sdn-definition. Accessed 23 June 2019
  2. 2.
    Fischer, A., Botero, J.F., Beck, M.T., De Meer, H., Hesselbach, X.: Virtual network embedding: a survey. IEEE Commun. Surv. Tutor. 15(4), 1888–1906 (2013)CrossRefGoogle Scholar
  3. 3.
    Mijumbi, R., Serrat, J., Rubio-Loyola, J., Bouten, N., De Turck, F., Latré, S.: Dynamic resource management in SDN-based virtualized networks. In: 10th International Conference on Network and Service Management (CNSM) and Workshop, pp. 412–417. IEEE, Brazil (2014)Google Scholar
  4. 4.
    Dehury, C.K., Sahoo, P.K.: DYVINE: fitness-based dynamic virtual network embedding in cloud computing. IEEE J. Sel. Areas Commun. 37, 1029–1045 (2019)CrossRefGoogle Scholar
  5. 5.
    Al-Moalmi, A., Luo, J., Salah, A., Li, K.: Optimal virtual machine placement based on grey wolf optimization. Electronics 8(3), 283 (2019)CrossRefGoogle Scholar
  6. 6.
    Calheiros, R., Ranjan, R., Beloglazov, A., De Rose, C., Buyya, R.: CloudSim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms. Softw.-Pract. Exp. 41, 23–50 (2011)CrossRefGoogle Scholar
  7. 7.
    Shahbazi, H., Sepideh, J.N.: Smart deployment of virtual machines to reduce energy consumption of cloud computing based data centers using gray wolf optimizer. In: International Conference on Information and Software Technologies, pp. 164–177. Springer, Cham (2018)Google Scholar
  8. 8.
    Nasiri, A.A., Derakhshan, F.: Assignment of virtual networks to substrate network for software defined networks. Int. J. Cloud Appl. Comput. (IJCAC) 8(4), 29–48 (2018)Google Scholar
  9. 9.
    Yao, X., Wang, H., Gao, C., Yi, S.: Maximizing network utilization for SDN based on Particle Swarm Optimization. In: IEEE 28th International Conference on Tools with Artificial Intelligence (ICTAI), pp. 921–925. IEEE, USA (2016)Google Scholar
  10. 10.
    McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford, J., Shenker, S., Turner, J.: OpenFlow: enabling innovation in campus networks. ACM SIGCOMM Comput. Commun. Rev. 38(2), 69–74 (2008)CrossRefGoogle Scholar
  11. 11.
    Azodolmolky, S., Wieder, P., Yahyapour, R.: SDN-based cloud computing network- ing. In: 15th International Conference on Transparent Optical Networks (ICTON), pp. 1–4. IEEE, Spain (2013)Google Scholar
  12. 12.
    Son, J., Buyya, R.: A taxonomy of software-defined networking (SDN)-enabled cloud computing. ACM Comput. Surv. (CSUR) 51(3), 59 (2018)CrossRefGoogle Scholar
  13. 13.
    Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014)CrossRefGoogle Scholar
  14. 14.
    Al-Fares, M., Loukissas, A., Vahdat, A.: A scalable, commodity data center network architecture. In: ACM SIGCOMM Computer Communication Review, vol. 38, no. 4, pp. 63–74, USA (2008)Google Scholar
  15. 15.
    Saremi, S., Mirjalili, S.Z., Mirjalili, S.M.: Evolutionary population dynamics and grey wolf optimizer. Neural Comput. Appl. 26(5), 1257–1263 (2015)CrossRefGoogle Scholar
  16. 16.
    Son, J., Dastjerdi, A.V., Calheiros, R.N., Ji, X., Yoon, Y., Buyya, R.: CloudSimSDN: modeling and simulation of software-defined cloud data centers. In: 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, pp. 475–484. IEEE, China (2015)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Abderrahim Bouchair
    • 1
    Email author
  • Sid Ahmed Makhlouf
    • 1
  • Yagoubi Belabbas
    • 1
  1. 1.LIO LaboratoryUniversity of Oran1OranAlgeria

Personalised recommendations