Advertisement

An Introduction to Special Functions with Some Applications to Quantum Mechanics

  • Sergei K. SuslovEmail author
  • José M. Vega-Guzmán
  • Kamal Barley
Conference paper
  • 55 Downloads
Part of the Tutorials, Schools, and Workshops in the Mathematical Sciences book series (TSWMS)

Abstract

A short review on special functions and solution of the Coulomb problems in quantum mechanics is given. Multiparameter wave functions of linear harmonic oscillator, which cannot be obtained by the standard separation of variables, are discussed. Expectation values in relativistic Coulomb problems are studied by computer algebra methods.

Keywords

Nonrelativistic and relativistic Coulomb problems Schrödinger equation Dirac equation Laguerre polynomials Spherical harmonics Bessel functions Hahn polynomials Chebyshev polynomials of a discrete variable Generalized hypergeometric series 

Mathematics Subject Classification (2000)

Primary 33A65 81C05; Secondary 81C40 

Notes

Acknowledgements

We are very grateful to the organizers of the AIMS-Volkswagen Stiftung Workshop on Introduction to Orthogonal Polynomials and Applications held in Douala, Cameroon, in October 2018, without their help this publication would be impossible. Sincere thanks to our co-authors Christoph Koutschan, Sergey Kryuchkov, Raquel M. López, Peter Paule and Erwin Suazo; some of our joint results were included in this chapter. We are very grateful to the referee for an outstanding job, her/his numerous comments helped us to improve the manuscript. Special thanks are directed to Jeremy Alm, Valentin Andreev, Al Boggess and Michael Laidacker for support and continuous encouragement. This work was partially supported by the National Institute of General Medical Sciences (NIGMS) at the National Institutes of Health (NIH; Grant # K12GM102778) and by the Lamar University Research Enhancement Grant (REG # 420266).

References

  1. 1.
    G.S. Adkins, Dirac-Coulomb energy levels and expectation values. Am. J. Phys. 76(6), 579–584 (2008). https://doi.org/10.1119/1.2830535 CrossRefGoogle Scholar
  2. 2.
    A.I. Akhiezer, V.B. Berestetskii, Quantum Electrodynamics. Interscience Monographs and Texts in Physics and Astronomy, vol. 11 (Interscience Publishers, New York, 1965). Translated from the Russian edition (Moscow, ed. 2, 1959) by A. Sen and R. N. Sen. Israel Program for Scientific Translations, JerusalemGoogle Scholar
  3. 3.
    V. Aldaya, F. Cossío, J. Guerrero, F.F. López-Ruiz, The quantum Arnold transformation. J. Phys. A Math. Theor. 44(6), 065302 (2011). https://doi.org/10.1088/1751-8113/44/6/065302
  4. 4.
    R.L. Anderson, S. Kumei, C.E. Wulfman, Invariants of the equations of wave mechanics I. Rev. Mex. Fís. 21(1), 1–33 (1972)MathSciNetGoogle Scholar
  5. 5.
    R.L. Anderson, S. Kumei, C.E. Wulfman, Invariants of the equations of wave mechanics II. One-particle Schrödinger equations. Rev. Mex. Fís. 21(1), 35–57 (1972)Google Scholar
  6. 6.
    D. Andrae, Recursive evaluation of expectation values 〈r k〉 for arbitrary states of the relativistic one–electron atom. J. Phys. B Atom. Mol. Phys. 30(20), 4435–4451 (1997). https://doi.org/10.1088/0953-4075/30/20/008 CrossRefGoogle Scholar
  7. 7.
    G.E. Andrews, R. Askey, Classical orthogonal polynomials, in Polynômes Orthogonaux et Applications, ed. by C. Brezinski, A. Draux, A.P. Magnus, P.M. Ronveaux. Lecture Notes in Mathematics, vol. 1171 (Springer, Berlin, 1985), pp. 36–62.  https://doi.org/10.1007/BFb0076530
  8. 8.
    G.E. Andrews, R. Askey, R. Roy, Special Functions. Encyclopedia of Mathematics and Its Applications, vol. 71 (Cambridge University Press, Cambridge, 1999).  https://doi.org/10.1017/CBO9781107325937
  9. 9.
    R. Askey, Orthogonal Polynomials and Special Functions. CBMS-NSF Regional Conference Series in Applied Mathematics, vol. CB21 (Society for Industrial and Applied Mathematics, Philadelphia, 1975). https://doi.org/10.1137/1.9781611970470
  10. 10.
    R. Askey, Continuous Hahn polynomials. J. Phys. A Math. Gen. 18(16), L1017–L1019 (1985). https://doi.org/10.1088/0305-4470/18/16/004 CrossRefMathSciNetzbMATHGoogle Scholar
  11. 11.
    R. Askey, J. Wilson, A set of hypergeometric orthogonal polynomials. SIAM J. Math. Anal. 13(4), 651–655 (1982). https://doi.org/10.1137/0513043 CrossRefMathSciNetzbMATHGoogle Scholar
  12. 12.
    R. Askey, J. Wilson, Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials. Mem. Am. Math. Soc. 54(319), iv+55 (1985).  https://doi.org/10.1090/memo/0319
  13. 13.
    N.M. Atakishiyev, S.K. Suslov, The Hahn and Meixner polynomials of an imaginary argument and some of their applications. J. Phys. A Math. Gen. 18(10), 1583–1596 (1985). https://doi.org/10.1088/0305-4470/18/10/014 CrossRefMathSciNetzbMATHGoogle Scholar
  14. 14.
    N.M. Atakishiyev, S.K. Suslov, On the moments of classical and related polynomials. Rev. Mex. Fís. 34(2), 147–151 (1988)MathSciNetzbMATHGoogle Scholar
  15. 15.
    N.M. Atakishiyev, S.K. Suslov, Difference hypergeometric functions, in Progress in Approximation Theory, ed. by A.A. Gonchar, E.B. Saff. Computational Mathematics Book Series, vol. 19 (Springer, New York, 1992), pp. 1–35. https://doi.org/10.1007/978-1-4612-2966-7_1
  16. 16.
    W.N. Bailey, Generalized Hypergeometric Series. Cambridge Tracts in Mathematics and Mathematical Physics, vol. 32 (Cambridge University Press, London, 1935)Google Scholar
  17. 17.
    S. Balasubramanian, Note on Feynman’s theorem. Am. J. Phys. 52(12), 1143–1144 (1984). https://doi.org/10.1119/1.13746 CrossRefGoogle Scholar
  18. 18.
    S. Balasubramanian, A note on the generalized Hellmann-Feynman theorem. Am. J. Phys. 58(12), 1204–1205 (1990). https://doi.org/10.1119/1.16254 CrossRefGoogle Scholar
  19. 19.
    V. Bargmann, Zur Theorie des Wasserstoffatoms. Z. Phys. 98(7), 576–582 (1936). https://doi.org/10.1007/BF01338811 Google Scholar
  20. 20.
    H. Bateman, Some properties of a certain set of polynomials. Tôhoku Math. J. First Ser. 37, 23–38 (1933)zbMATHGoogle Scholar
  21. 21.
    H. Bateman, Functions orthogonal in the Hermitian sense. A new application of basic numbers. Proc. Natl. Acad. Sci. 20(1), 63–66 (1934).  https://doi.org/10.1073/pnas.20.1.63 CrossRefzbMATHGoogle Scholar
  22. 22.
    H. Bateman, The polynomial F n(x). Ann. Math. 35, 767–775 (1934). https://doi.org/10.2307/1968493 CrossRefMathSciNetzbMATHGoogle Scholar
  23. 23.
    H. Bateman, The polynomial F n(x) and its relation to other functions. Ann. Math. 38(2), 303–310 (1937). https://doi.org/10.2307/1968555 CrossRefMathSciNetzbMATHGoogle Scholar
  24. 24.
    H. Bateman, An orthogonal property of the hypergeometric polynomial. Proc. Natl. Acad. Sci. 28(9), 374–377 (1942).  https://doi.org/10.1073/pnas.28.9.374 CrossRefMathSciNetzbMATHGoogle Scholar
  25. 25.
    V.B. Berestetskii, E.M. Lifshitz, L.P. Pitaevskii, Relativistic quantum theory: part 1, in Course of Theoretical Physics, vol. 4, 1st edn. (Pergamon Press, Oxford, 1971). Translated from the Russian by J. B. Sykes and J. S. BellGoogle Scholar
  26. 26.
    M.V. Berry, Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A Math. Phys. Sci. 392(1802), 45–57 (1984).  https://doi.org/10.1098/rspa.1984.0023 MathSciNetzbMATHGoogle Scholar
  27. 27.
    M.V. Berry, Classical adiabatic angles and quantal adiabatic phase. J. Phys. A Math. Gen. 18(1), 15–27 (1985). https://doi.org/10.1088/0305-4470/18/1/012 CrossRefMathSciNetzbMATHGoogle Scholar
  28. 28.
    H.A. Bethe, E.E. Salpeter, Quantum Mechanics of One- and Two-Electron Atoms (Springer, Berlin, 1957). https://doi.org/10.1007/978-3-662-12869-5 CrossRefzbMATHGoogle Scholar
  29. 29.
    L.C. Biedenharn, The “Sommerfeld Puzzle” revisited and resolved. Found. Phys. 13(1), 13–34 (1983). https://doi.org/10.1007/BF01889408 CrossRefMathSciNetGoogle Scholar
  30. 30.
    J.D. Bjorken, S.D. Drell, Relativistic Quantum Mechanics. International Series in Pure and Applied Physics (McGraw-Hill Book, New York, 1964)Google Scholar
  31. 31.
    N.N. Bogolíùbov, D.V. Shirkov, Introduction to the Theory of Quantized Fields, 3rd edn. (Wiley, New York, 1980)Google Scholar
  32. 32.
    G. Boole, A Treatise on the Calculus of Finite Differences, ed. by J.F. Moulton. Dover Books on Advanced Mathematics (MacMillan and Company, New York, 1872)Google Scholar
  33. 33.
    G. Boole, A Treatise on Differential Equations, 5th edn. (Chelsea Publishing Company, New York, 1959)Google Scholar
  34. 34.
    C.P. Boyer, R.T. Sharp, P. Winternitz, Symmetry breaking interactions for the time dependent Schrödinger equation. J. Math. Phys. 17(8), 1439–1451 (1976). https://doi.org/10.1063/1.523068 CrossRefzbMATHGoogle Scholar
  35. 35.
    F. Brafman, On Touchard polynomials. Can. J. Math. 9, 191–193 (1957).  https://doi.org/10.4153/CJM-1957-022-6 CrossRefMathSciNetzbMATHGoogle Scholar
  36. 36.
    G. Breit, Possible effects of nuclear spin on X-ray terms. Phys. Rev. 35(12), 1447–1451 (1930).  https://doi.org/10.1103/PhysRev.35.1447 CrossRefzbMATHGoogle Scholar
  37. 37.
    G. Breit, G.E. Brown, Effect of nuclear motion on the fine structure of hydrogen. Phys. Rev. 74(10), 1278–1284 (1948).  https://doi.org/10.1103/PhysRev.74.1278 CrossRefzbMATHGoogle Scholar
  38. 38.
    T.J.I. Bromwich, An Introduction to the Theory of Infinite Series, 2nd edn. (MacMillan, London, 1965)Google Scholar
  39. 39.
    G.E. Brown, Note on a relation in Dirac’s theory of the electron. Proc. Natl. Acad. Sci. 36(1), 15–17 (1950).  https://doi.org/10.1073/pnas.36.1.15 CrossRefMathSciNetzbMATHGoogle Scholar
  40. 40.
    V.M. Burke, I.P. Grant, The effect of relativity on atomic wave functions. Proc. Phys. Soc. 90(2), 297–314 (1967). https://doi.org/10.1088/0370-1328/90/2/301 CrossRefGoogle Scholar
  41. 41.
    L. Carlitz, Some polynomials of Touchard connected with the Bernoulli numbers. Can. J. Math. 9, 188–190 (1957).  https://doi.org/10.4153/CJM-1957-021-9 CrossRefMathSciNetzbMATHGoogle Scholar
  42. 42.
    L. Carlitz, Bernoulli and Euler numbers and orthogonal polynomials. Duke Math. J. 26(1), 1–15 (1959). https://doi.org/10.1215/s0012-7094-59-02601-8 CrossRefMathSciNetzbMATHGoogle Scholar
  43. 43.
    D.C. Cassidy, Uncertainty: The Life and Science of Werner Heisenberg (W. H. Freeman, New York, 1991). http://www.aip.org/history/heisenberg/p08.htm Google Scholar
  44. 44.
    R. Cordero-Soto, E. Suazo, S.K. Suslov, Quantum integrals of motion for variable quadratic Hamiltonians. Ann. Phys. 325(9), 1884–1912 (1981). https://doi.org/10.1016/j.aop.2010.02.020 CrossRefMathSciNetzbMATHGoogle Scholar
  45. 45.
    R. Cordero-Soto, R.M. López, E. Suazo, S.K. Suslov, Propagator of a charged particle with a spin in uniform magnetic and perpendicular electric fields. Lett. Math. Phys. 84(2–3), 159–178 (2008). https://doi.org/10.1007/s11005-008-0239-6 CrossRefMathSciNetzbMATHGoogle Scholar
  46. 46.
    E.A. Cornell, C.E. Wieman, Nobel lecture: Bose-Einstein condensation in a dilute gas, the first 70 years and some recent experiments. Rev. Mod. Phys. 74, 875–893 (2002).  https://doi.org/10.1103/RevModPhys.74.875 CrossRefGoogle Scholar
  47. 47.
    F. Dalfovo, S. Giorgini, L.P. Pitaevskii, S. Stringari, Theory of Bose-Einstein condensation in trapped gases. Rev. Mod. Phys. 71, 463–512 (1999).  https://doi.org/10.1103/RevModPhys.71.463 CrossRefGoogle Scholar
  48. 48.
    C.G. Darwin, The wave equations of the electron. Proc. R. Soc. A Math. Phys. Eng. Sci. 118(780), 654–680 (1928).  https://doi.org/10.1098/rspa.1928.0076 zbMATHGoogle Scholar
  49. 49.
    L. Davis, A note on the wave functions of the relativistic hydrogenic atom. Phys. Rev. 56, 186–187 (1939).  https://doi.org/10.1103/PhysRev.56.186 CrossRefzbMATHGoogle Scholar
  50. 50.
    A.S. Davydov, Quantum Mechanics (Pergamon Press, Oxford, 1965)Google Scholar
  51. 51.
    Y.N. Demkov, Channeling, superfocusing, and nuclear reactions. Phys. At. Nucl. 72(5), 779–785 (2009). https://doi.org/10.1134/s1063778809050056 CrossRefGoogle Scholar
  52. 52.
    Y.N. Demkov, J.D. Meyer, A sub-atomic microscope, superfocusing in channeling and close encounter atomic and nuclear reactions. Eur. Phys. J. B 42(3), 361–365 (2004).  https://doi.org/10.1140/epjb/e2004-00391-6 CrossRefGoogle Scholar
  53. 53.
    P.A.M. Dirac, The quantum theory of the electron. Proc. R. Soc. Lond. A 117(778), 610–624 (1928).  https://doi.org/10.1098/rspa.1928.0023 CrossRefzbMATHGoogle Scholar
  54. 54.
    P.A.M. Dirac, The quantum theory of the electron. Part II. Proc. R. Soc. Lond. 118(779), 351–361 (1928).  https://doi.org/10.1098/rspa.1928.0056 zbMATHGoogle Scholar
  55. 55.
    P.A.M. Dirac, The Principles of Quantum Mechanics. International Series of Monographs on Physics, vol. 27, 3rd edn. (Clarendon Press, Oxford, 1947)Google Scholar
  56. 56.
    V.V. Dodonov, Current status of the dynamical Casimir effect. Phys. Scr. 82(3), 38105 (2010). https://doi.org/10.1088/0031-8949/82/03/038105
  57. 57.
    V.V. Dodonov, V.I. Man’ko, Invariants and the evolution of nonstationary quantum system (in Russian), in Proceedings of Lebedev Physics Institute, vol. 183 (Nauka, Moscow, 1989), pp. 71–181; English translation published by Nova Science, Commack, New York, 1989, pp. 103–261Google Scholar
  58. 58.
    V.V. Dodonov, I.A. Malkin, V.I. Man’ko, Integrals of the motion, Green functions, and coherent states of dynamical systems. Int. J. Theor. Phys. 14(1), 37–54 (1975). https://doi.org/10.1007/BF01807990 CrossRefMathSciNetGoogle Scholar
  59. 59.
    V.V. Dodonov, A.B. Klimov, D.E. Nikonov, Quantum phenomena in nonstationary media. Phys. Rev. A 47(5), 4422–4429 (1993).  https://doi.org/10.1103/PhysRevA.47.4422 CrossRefGoogle Scholar
  60. 60.
    J. Dorling, Energy levels of the hydrogen atom as a relativistic clock-retardation effect? Am. J. Phys. 38(4), 510–512 (1970). https://doi.org/10.1119/1.1976376 CrossRefGoogle Scholar
  61. 61.
    V.A. Dulock, H.V. McIntosh, On the degeneracy of the Kepler problem. Pac. J. Math. 19(1), 39–55 (1966).  https://doi.org/10.2140/pjm.1966.19.39 CrossRefMathSciNetzbMATHGoogle Scholar
  62. 62.
    A.R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton University Press, Princeton, 1953)zbMATHGoogle Scholar
  63. 63.
    P. Ehrenfest, Bemerkung über die angenä herte Gültigkeit der klassischen Mechanik innerhalb der Quantenmechanik (in German). Z. Phys. 45(7), 455–457 (1927). https://doi.org/10.1007/BF01329203 CrossRefzbMATHGoogle Scholar
  64. 64.
    S.T. Epstein, A differential equation for the energy eigenvalues of relativistic hydrogenic atoms, and its solution. Am. J. Phys. 44(3), 251–252 (1976). https://doi.org/10.1119/1.10466 CrossRefGoogle Scholar
  65. 65.
    J.H. Epstein, S.T. Epstein, Some applications of hypervirial theorems to the calculation of average values. Am. J. Phys. 30(4), 266–268 (1962). https://doi.org/10.1119/1.1941987 CrossRefMathSciNetzbMATHGoogle Scholar
  66. 66.
    A. Erdélyi, W. Magnus, F. Oberhettinger, F.G. Tricomi, Higher Transcendental Functions, Vols. I–III. Robert E. Krieger, Melbourne (1981). Based on notes left by Harry Bateman, With a preface by Mina Rees, With a foreword by E. C. Watson, Reprint of the 1953 originalGoogle Scholar
  67. 67.
    V.P. Ermakov, Second-order differential equations: conditions of complete integrability. Appl. Anal. Discrete Math. 2(2), 123–145 (2008).  https://doi.org/10.2298/AADM0802123E CrossRefMathSciNetzbMATHGoogle Scholar
  68. 68.
    L.D. Faddeev, The Feynman integral for singular Lagrangians (in Russian). Theor. Math. Phys. 1(1), 1–13 (1969). https://doi.org/10.1007/BF01028566 CrossRefzbMATHGoogle Scholar
  69. 69.
    P.O. Fedichev, Y. Kagan, G.V. Shlyapnikov, J.T.M. Walraven, Influence of nearly resonant light on the scattering length in low-temperature atomic gases. Phys. Rev. Lett. 77, 2913–2916 (1996).  https://doi.org/10.1103/PhysRevLett.77.2913 CrossRefGoogle Scholar
  70. 70.
    E. Fermi, Quantum theory of radiation. Rev. Mod. Phys. 4, 87–132 (1932).  https://doi.org/10.1103/RevModPhys.4.87 CrossRefzbMATHGoogle Scholar
  71. 71.
    E. Fermi, Notes on Quantum Mechanics. Phoenix Science, vol. 512 (University of Chicago Press, Chicago, 1961)Google Scholar
  72. 72.
    R.P. Feynman, A.R. Hibbs, Quantum Mechanics and Path Integrals. International Series in Pure and Applied Physics (McGraw–Hill Book, New York, 1984)Google Scholar
  73. 73.
    S. Flügge, Practical Quantum Mechanics. Classics in Mathematics, vol. 177 (Springer, Berlin, 1999). https://doi.org/10.1007/978-3-642-61995-3
  74. 74.
    V. Fock, Bemerkung zum Virialsatz. Z. Phys. 63(11), 855–858 (1930). https://doi.org/10.1007/BF01339281 Google Scholar
  75. 75.
    V. Fock, Zur theorie des Wasserstoffatoms. Z. Phys. 98(3), 145–154 (1935). https://doi.org/10.1007/BF01336904 CrossRefzbMATHGoogle Scholar
  76. 76.
    J.L. Friar, J.W. Negele, Hypervirial theorems for the Dirac equation. Phys. Rev. C 13, 1338–1340 (1976).  https://doi.org/10.1103/PhysRevC.13.1338 CrossRefGoogle Scholar
  77. 77.
    T. Fujii, S. Matsuo, N. Hatakenaka, S. Kurihara, A. Zeilinger, Quantum circuit analog of the dynamical Casimir effect. Phys. Rev. B 84, 174521 (2011).  https://doi.org/10.1103/PhysRevB.84.174521 CrossRefGoogle Scholar
  78. 78.
    R.H. Garstang, D.F. Mayers, Screening constants for relativistic wave functions. Math. Proc. Camb. Philos. Soc. 62(4), 777–782 (1966). https://doi.org/10.1017/S0305004100040482 CrossRefGoogle Scholar
  79. 79.
    G. Gasper, M. Rahman, Basic hypergeometric series, in Encyclopedia of Mathematics and its Applications, vol. 96, 2nd edn. (Cambridge University Press, Cambridge, 2004).  https://doi.org/10.1017/CBO9780511526251
  80. 80.
    J.L. Geronimus, Orthogonal polynomials, in Two Papers on Special Functions, ed. by J.L. Geronimus, G. Szegö. American Mathematical Society Translations, vol. 108, chap. 3 (American Mathematical Society, Providence, 1977), pp. 37–130.  https://doi.org/10.1090/trans2/108
  81. 81.
    S.P. Goldman, G.W.F. Drake, Relativistic sum rules and integral properties of the Dirac equation. Phys. Rev. A 25, 2877–2881 (1982).  https://doi.org/10.1103/PhysRevA.25.2877 CrossRefMathSciNetGoogle Scholar
  82. 82.
    I.I. Gol’dman, V.D. Krivchenkov, B.T. Geĭlikman, Problems in Quantum Mechanics (Dover Publications, New York, 1993)Google Scholar
  83. 83.
    W. Gordon, Die Energieniveaus des Wasserstoffatoms nach der Diracshen Quantentheorie des Elektrons (in German). Z. Phys. 48(1), 11–14 (1928). https://doi.org/10.1007/BF01351570 CrossRefzbMATHGoogle Scholar
  84. 84.
    J. Guerrero, F.F. López-Ruiz, V. Aldaya, F. Cossío, Harmonic states for the free particle. J. Phys. A Math. Theor. 44(44), 445307 (2011). https://doi.org/10.1088/1751-8113/44/44/445307
  85. 85.
    A. Gumberidze, T. Stöhlker, D. Banaś, K. Beckert, P. Beller, H.F. Beyer, F. Bosch, S. Hagmann, C. Kozhuharov, D. Liesen, F. Nolden, X. Ma, P.H. Mokler, M. Steck, D. Sierpowski, S. Tashenov, Quantum electrodynamics in strong electric fields: the ground-state Lamb shift in hydrogenlike uranium. Phys. Rev. Lett. 94, 223001 (2005).  https://doi.org/10.1103/PhysRevLett.94.223001 CrossRefGoogle Scholar
  86. 86.
    A. Gumberidze, T. Stöhlker, D. Banaś, K. Beckert, P. Beller, H.F. Beyer, F. Bosch, X. Cai, S. Hagmann, C. Kozhuharov, D. Liesen, F. Nolden, X. Ma, P.H. Mokler, M. Steck, D. Sierpowski, S. Tashenov, A. Warczak, Y. Zou, Precision tests of QED in strong fields: experiments on hydrogen- and helium-like uranium. J. Phys. Conf. Ser. 58, 87–92 (2007). https://doi.org/10.1088/1742-6596/58/1/013 CrossRefGoogle Scholar
  87. 87.
    C.R. Hagen, Scale and conformal transformations in Galilean-covariant field theory. Phys. Rev. D 5, 377–388 (1972).  https://doi.org/10.1103/PhysRevD.5.377 CrossRefGoogle Scholar
  88. 88.
    G. Harari, Y. Ben-Aryeh, A. Mann, Propagator for the general time-dependent harmonic oscillator with application to an ion trap. Phys. Rev. A 84, 062104 (2011).  https://doi.org/10.1103/PhysRevA.84.062104 CrossRefGoogle Scholar
  89. 89.
    G.H. Hardy, Notes on special systems of orthogonal functions (III): a system of orthogonal polynomials. Math. Proc. Camb. Philos. Soc. 36(1), 1–8 (1940). https://doi.org/10.1017/S0305004100016947 CrossRefMathSciNetzbMATHGoogle Scholar
  90. 90.
    S. Haroche, J.M. Raimond, Exploring the Quantum: Atoms, Cavities, and Photons (Oxford University Press, Oxford, 2006).  https://doi.org/10.1093/acprof:oso/9780198509141.001.0001 CrossRefzbMATHGoogle Scholar
  91. 91.
    D.R. Hartree, The Calculation of Atomic Structures. Structure of Matter Series (Wiley, New York, 1957)zbMATHGoogle Scholar
  92. 92.
    W. Heisenberg, The Physical Principles of the Quantum Theory. Dover Books on Physics and Chemistry (University of Chicago Press/Dover Publications, Chicago/New York 1930/1940)Google Scholar
  93. 93.
    W. Heisenberg, Physics and Philosophy: The Revolution in Modern Science. Lectures Delivered at University of St. Andrews, Scotland, Winter 1955–1956 (Harper and Row, New York, 1958). http://www.aip.org/history/heisenberg/p13e.htm.
  94. 94.
    R.W. Henry, S.C. Glotzer, A squeezed-state primer. Am. J. Phys. 56(4), 318–328 (1988). https://doi.org/10.1119/1.15631 CrossRefMathSciNetGoogle Scholar
  95. 95.
    M.E.H. Ismail, D.R. Masson, M. Rahman, Complex weight functions for classical orthogonal polynomials. Can. J. Math. 43(6), 1294–1308 (1991).  https://doi.org/10.4153/CJM-1991-074-8 CrossRefMathSciNetzbMATHGoogle Scholar
  96. 96.
    C. Itzykson, J. Zuber, Quantum Field Theory. Dover Books on Physics (Dover Publications, New York, 2005)Google Scholar
  97. 97.
    R. Jackiw, Dynamical symmetry of the magnetic monopole. Ann. Phys. 129(1), 183–200 (1980). https://doi.org/10.1016/0003-4916(80)90295-X CrossRefMathSciNetGoogle Scholar
  98. 98.
    E.G. Kalnins, W. Miller, Lie theory and separation of variables. 5. The equations iU t + U xx = 0 and iU t + U xx − cx 2U = 0. J. Math. Phys. 15(10), 1728–1737 (1974). https://doi.org/10.1063/1.1666533
  99. 99.
    S.G. Karshenboim, V.B. Smirnov, Precision Physics of Simple Atomic Systems. Lecture Notes in Physics, vol. 627 (Springer, Berlin, 2003). https://doi.org/10.1007/b13865
  100. 100.
    S.G. Karshenboim, F. Bassani, F. Pavone, M. Inguscio, T. Hänsch, The Hydrogen Atom: Precision Physics of Simple Atomic Systems. Lecture Notes in Physics, vol. 570 (Springer, Berlin, 2001). https://doi.org/10.1007/3-540-45395-4
  101. 101.
    I.B. Khriplovich, Fundamental symmetries and atomic physics. Phys. Scr. T112(1), 52–62 (2004).  https://doi.org/10.1238/physica.topical.112a00052 CrossRefGoogle Scholar
  102. 102.
    Y.S. Kivshar, T.J. Alexander, S.K. Turitsyn, Nonlinear modes of a macroscopic quantum oscillator. Phys. Lett. A 278(4), 225–230 (2001). https://doi.org/10.1016/S0375-9601(00)00774-X CrossRefMathSciNetzbMATHGoogle Scholar
  103. 103.
    R. Koekoek, P.A. Lesky, R.F. Swarttouw, Hypergeometric Orthogonal Polynomials and Their q-Analogues. Springer Monographs in Mathematics (Springer, Berlin, 2010). https://doi.org/10.1007/978-3-642-05014-5
  104. 104.
    H.T. Koelink, On Jacobi and continuous Hahn polynomials. Proc. Am. Math. Soc. 124(3), 887–898 (1996). https://doi.org/10.1090/S0002-9939-96-03190-5 CrossRefMathSciNetzbMATHGoogle Scholar
  105. 105.
    F. Köhler-Langes, The Electron Mass and Calcium Isotope Shifts: High-Precision Measurements of Bound-Electron g-Factors of Highly Charged Ions. Springer Theses (Springer, Berlin, 2017). https://doi.org/10.1007/978-3-319-50877-1 CrossRefGoogle Scholar
  106. 106.
    C. Koutschan (2019). https://math.la.asu.edu/~suslov/curres/index.htm. See Mathematica notebook: Koutschan.nb.
  107. 107.
    C. Koutschan, P. Paule, S.K. Suslov, Relativistic Coulomb integrals and Zeilberger’s holonomic systems approach II, in Algebraic and Algorithmic Aspects of Differential and Integral Operators, ed. by M. Barkatou, T. Cluzeau, G. Regensburger, M. Rosenkranz. Lecture Notes in Computer Science; AADIOS 2012, vol. 8372 (Springer, Berlin, 2014), pp. 135–145. https://doi.org/10.1007/978-3-642-54479-8_6
  108. 108.
    C. Koutschan, E. Suazo, S.K. Suslov, Fundamental laser modes in paraxial optics: from computer algebra and simulations to experimental observation. Appl. Phys. B 121(3), 315–336 (2015). https://doi.org/10.1007/s00340-015-6231-9 CrossRefGoogle Scholar
  109. 109.
    C. Krattenthaler, S.I. Kryuchkov, A. Mahalov, S.K. Suslov, On the problem of electromagnetic-field quantization. Int. J. Theor. Phys. 52(12), 4445–4460 (2013). https://doi.org/10.1007/s10773-013-1764-3 CrossRefzbMATHGoogle Scholar
  110. 110.
    S.I. Kryuchkov, S.K. Suslov, J.M. Vega-Guzmán, The minimum-uncertainty squeezed states for atoms and photons in a cavity. J. Phys. B Atom. Mol. Opt. Phys. 46(10), 104007 (2013). https://doi.org/10.1088/0953-4075/46/10/104007 (IOP=Institute Of Physics SELECT and HIGHLIGHT for 2013)
  111. 111.
    S.I. Kryuchkov, N.A. Lanfear, S.K. Suslov, The role of the Pauli-Lubański vector for the Dirac, Weyl, Proca, Maxwell and Fierz-Pauli equations. Phys. Scr. 91(3), 035301 (2016). https://doi.org/10.1088/0031-8949/91/3/035301
  112. 112.
    S.I. Kryuchkov, E. Suazo, S.K. Suslov, Time-dependent photon statistics in variable media. Math. Methods Appl. Sci. (2018).  https://doi.org/10.1002/mma.5285
  113. 113.
    L.D. Landau, E.M. Lifshitz, Quantum Mechanics: Non-relativistic Theory, 3rd edn. (Butterworth-Heinemann, Pergamon, 1977). https://doi.org/10.1016/C2013-0-02793-4 zbMATHGoogle Scholar
  114. 114.
    N. Lanfear, S.K. Suslov, The time-dependent Schrödinger groups equation, Riccati equation and Airy functions. arXiv e-prints (2009), pp. 1–28Google Scholar
  115. 115.
    N. Lanfear, R.M. López, S.K. Suslov, Exact wave functions for generalized harmonic oscillators. J. Russ. Laser Res. 32(4), 352–361 (2011). https://doi.org/10.1007/s10946-011-9223-1 CrossRefGoogle Scholar
  116. 116.
    P. Leach, S. Andriopoulos, The Ermakov equation: a commentary. Appl. Anal. Discrete Math. 2(2), 146–157 (2008).  https://doi.org/10.2298/AADM0802146L CrossRefMathSciNetzbMATHGoogle Scholar
  117. 117.
    D. Leibfried, R. Blatt, C. Monroe, D. Wineland, Quantum dynamics of single trapped ions. Rev. Mod. Phys. 75(1), 281–324 (2003).  https://doi.org/10.1103/RevModPhys.75.281 CrossRefGoogle Scholar
  118. 118.
    U. Leonhardt, H. Paul, Measuring the quantum state of light. Prog. Quant. Electron. 19(2), 89–130 (1995). https://doi.org/10.1016/0079-6727(94)00007-L CrossRefGoogle Scholar
  119. 119.
    H.R. Lewis, W.B. Riesenfeld, An exact quantum theory of the time-dependent harmonic oscillator and of a charged particle in a time-dependent electromagnetic field. J. Math. Phys. 10(8), 1458–1473 (1969). https://doi.org/10.1063/1.1664991 CrossRefMathSciNetzbMATHGoogle Scholar
  120. 120.
    R. López, S. Suslov, The Cauchy problem for a forced harmonic oscillator. Revista Mexicana de Física 55, 196–215 (2009)MathSciNetGoogle Scholar
  121. 121.
    R.M. López, S.K. Suslov, J.M. Vega-Guzmán, On a hidden symmetry of quantum harmonic oscillators. J. Differ. Equ. Appl. 19(4), 543–554 (2013). https://doi.org/10.1080/10236198.2012.658384 CrossRefMathSciNetzbMATHGoogle Scholar
  122. 122.
    R.M. López, S.K. Suslov, J.M. Vega-Guzmán, Reconstructing the Schrödinger groups. Phys. Scr. 87(3), 038112 (2013). https://doi.org/10.1088/0031-8949/87/03/038112
  123. 123.
    R.M. López, S.K. Suslov, J. Vega-Guzmán (2019). https://math.la.asu.edu/~suslov/curres/index.htm. See Mathematica notebook: HarmonicOscillatorGroup.nb
  124. 124.
    I.A. Malkin, V.I. Man’ko, Dynamic Symmetry and Coherent States of Quantum Systems (in Russian) (Nauka, Moscow, 1979)Google Scholar
  125. 125.
    N.H. March, The viral theorem for Dirac’s equation. Phys. Rev. 92(2), 481–482 (1953).  https://doi.org/10.1103/PhysRev.92.481 CrossRefMathSciNetzbMATHGoogle Scholar
  126. 126.
    H. Margenau, Relativistic magnetic moment of a charged particle. Phys. Rev. 57(5), 383–386 (1940).  https://doi.org/10.1103/PhysRev.57.383 CrossRefGoogle Scholar
  127. 127.
    M.E. Marhic, Oscillating Hermite-Gaussian wave functions of the harmonic oscillator. Lettere al Nuovo Cimento (1971–1985) 22(9), 376–378 (1978). https://doi.org/10.1007/BF02820587
  128. 128.
    R.P. Martínez-y-Romero, Relativistic hydrogen atom revisited. Am. J. Phys. 68(11), 1050–1055 (2000). https://doi.org/10.1119/1.1286314 CrossRefGoogle Scholar
  129. 129.
    R.J. McKee, μ-Atomic hyperfine structure in the K, L, and M lines of U238 and Th232. Phys. Rev. 180(4), 1139–1158 (1969).  https://doi.org/10.1103/PhysRev.180.1139
  130. 130.
    W.A. McKinley, Hellmann-Feynman theorems in classical and quantum mechanics. Am. J. Phys. 39(8), 905–910 (1971). https://doi.org/10.1119/1.1986322 CrossRefGoogle Scholar
  131. 131.
    M. Meiler, R. Cordero-Soto, S.K. Suslov, Solution of the Cauchy problem for a time-dependent Schrödinger equation. J. Math. Phys. 49(7), 072102 (2008). https://doi.org/10.1063/1.2938698
  132. 132.
    E. Merzbacher, Quantum Mechanics, 3rd edn. (Wiley, Hoboken, 1998)zbMATHGoogle Scholar
  133. 133.
    A. Messiah, Quantum Mechanics: Two Volumes Bound as One. Dover Books on Physics (Dover Publications, New York, 1999)Google Scholar
  134. 134.
    W. Miller, Symmetry and Separation of Variables. Encyclopedia of Mathematics and its Applications, vol. 4 (Cambridge University Press, Cambridge, 1984).  https://doi.org/10.1017/CBO9781107325623
  135. 135.
    P.J. Mohr, G. Plunien, G. Soff, QED corrections in heavy atoms. Phys. Rep. 293(5), 227–369 (1998). https://doi.org/10.1016/S0370-1573(97)00046-X CrossRefGoogle Scholar
  136. 136.
    U. Niederer, The maximal kinematical invariance group of the free Schrödinger equations. Helv. Phys. Acta 45(5), 802–810 (1972).  https://doi.org/10.5169/seals-114417 MathSciNetGoogle Scholar
  137. 137.
    U. Niederer, The maximal kinematical invariance group of the harmonic oscillator. Helv. Phys. Acta 46(2), 191–200 (1973).  https://doi.org/10.5169/seals-114478 MathSciNetGoogle Scholar
  138. 138.
    A.F. Nikiforov, V.B. Uvarov, Special Functions of Mathematical Physics: A Unified Introduction with Applications (Birkhäuser, Boston, 1988). https://doi.org/10.1007/978-1-4757-1595-8_1 CrossRefzbMATHGoogle Scholar
  139. 139.
    A.F. Nikiforov, S.K. Suslov, V.B. Uvarov, Classical Orthogonal Polynomials of a Discrete Variable. Springer Series in Computational Physics (Springer, Berlin, 1991). https://doi.org/10.1007/978-3-642-74748-9
  140. 140.
    A.F. Nikiforov, V.G. Novikov, V.B. Uvarov, Quantum-Statistical Models of Hot Dense Matter: Methods for Computation Opacity and Equation of State. Progress in Mathematical Physics, vol. 37 (Birkhäuser, Basel, 2005). https://doi.org/10.1007/b137687
  141. 141.
    S. Pasternack, On the mean value of r s for Keplerian systems. Proc. Natl. Acad. Sci. 23(2), 91–94 (1937).  https://doi.org/10.1073/pnas.23.2.91 CrossRefzbMATHGoogle Scholar
  142. 142.
    S. Pasternack, A generalization of the polynomial F n(x). Lond. Edinburgh Dublin Philos. Mag. J. Sci. 28(187), 209–226 (1939). https://doi.org/10.1080/14786443908521175 CrossRefMathSciNetzbMATHGoogle Scholar
  143. 143.
    P. Paule, S.K. Suslov, Relativistic Coulomb integrals and Zeilberger’s holonomic systems approach. I, in Computer Algebra in Quantum Field Theory: Integration, Summation and Special Functions, Texts & Monographs in Symbolic Computation, ed. by C. Schneider, J. Blümlein (Springer, Vienna, 2013), pp. 225–241. https://doi.org/10.1007/978-3-7091-1616-6_9 CrossRefGoogle Scholar
  144. 144.
    L. Pitaevskii, S. Stringari, Bose-Einstein Condensation, Illustrated. International Series of Monographs on Physics, reprint edn. (A Clarendon Press, Oxford, 2003)Google Scholar
  145. 145.
    P. Pyykkö, E. Pajanne, M. Inokuti, Hydrogen-like relativistic corrections for electric and magnetic hyperfine integrals. Int. J. Quant. Chem. 7(4), 785–806 (1973).  https://doi.org/10.1002/qua.560070415 CrossRefGoogle Scholar
  146. 146.
    W.C. Qiang, S.H. Dong, Radial position–momentum uncertainties for the Dirac hydrogen-like atoms. J. Phys. A Math. Gen. 39(27), 8663–8673 (2006). https://doi.org/10.1088/0305-4470/39/27/007 CrossRefMathSciNetzbMATHGoogle Scholar
  147. 147.
    D. Rainville, Special Functions. AMS Chelsea Publishing Series (Chelsea Publishing Company, Hartford, 1971)zbMATHGoogle Scholar
  148. 148.
    M.E. Rose, Elementary Theory of Angular Momentum. Dover Books on Physics and Chemistry (Wiley, New York, 1957); reprinted by Dover, New York (1995)Google Scholar
  149. 149.
    M.E. Rose, Relativistic Electron Theory, 1st edn. (Wiley, New York, 1961)zbMATHGoogle Scholar
  150. 150.
    M.E. Rose, T.A. Welton, The virial theorem for a Dirac particle. Phys. Rev. Lett. 86(3), 432–433 (1952).  https://doi.org/10.1103/PhysRev.86.432.2 MathSciNetzbMATHGoogle Scholar
  151. 151.
    S.I. Rosencrans, Perturbation algebra of an elliptic operator. J. Math. Anal. Appl. 56(2), 317–329 (1976). https://doi.org/10.1016/0022-247X(76)90045-7 CrossRefMathSciNetzbMATHGoogle Scholar
  152. 152.
    F. Rosicky, F. Mark, The relativistic virial theorem by the elimination method and nonrelativistic approximations to this theorem. J. Phys. B Atom. Mol. Phys. 8(16), 2581–2587 (1975). https://doi.org/10.1088/0022-3700/8/16/014 CrossRefGoogle Scholar
  153. 153.
    P. Rusev, Analytic Functions and Classical Orthogonal Polynomials. Bulgarian Mathematical Monographs, vol. 3 (Publishing House of the Bulgarian Academy of Sciences, Sofia, 1984). With a Russian summaryGoogle Scholar
  154. 154.
    B. Sanborn, S.K. Suslov, L. Vinet, Dynamic invariants and the Berry phase for generalized driven harmonic oscillators. J. Russ. Laser Res. 32(5), 486–494 (2011). https://doi.org/10.1007/s10946-011-9238-7 CrossRefGoogle Scholar
  155. 155.
    R.M. Schectman, R.H. Good, Generalizations of the virial theorem. Am. J. Phys. 25(4), 219–225 (1957). https://doi.org/10.1119/1.1934404 CrossRefzbMATHGoogle Scholar
  156. 156.
    L.I. Schiff, Quantum Mechanics. International Series in Pure and Applied Physics, 3rd edn. (McGraw-Hill, New York, 1968)Google Scholar
  157. 157.
    E. Schrödinger, Der stetige Übergang von der Mikro-zur Makro Mechanik (in German). Naturwissenschaften 14(28), 664–666 (1926). https://doi.org/10.1007/BF01507634. http://www.nobelprize.org/nobel{_}prizes/physics/laureates/1933/schrodinger-bio.html and http://www.zbp.univie.ac.at/schrodinger/euebersicht.htm
  158. 158.
    E. Schrödinger, Quantisierung als Eigenwertproblem (in German). Ann. Phys. 79(6), 489–527 (1926).  https://doi.org/10.1002/andp.19263840602; see also Collected Papers on Wave Mechanics, Blackie & Son Ltd, London and Glascow, 1928, pp. 13–40, for English translation of Schrödinger’s original paper
  159. 159.
    V.M. Shabaev, Recurrence formulas and some exact relations for radial integrals with Dirac and Schrödinger wave functions (in Russian). Vestnik Leningradskogo Universiteta Fizika Khimiya 4(1), 15–19 (1984)Google Scholar
  160. 160.
    V.M. Shabaev, Generalizations of the virial relations for the Dirac equation in a central field and their applications to the Coulomb field. J. Phys. B Atom. Mol. Opt. Phys. 24(21), 4479–4488 (1991). https://doi.org/10.1088/0953-4075/24/21/004 CrossRefMathSciNetGoogle Scholar
  161. 161.
    V.M. Shabaev, Hyperfine structure of hydrogen-like ions. J. Phys. B Atom. Mol. Opt. Phys. 27(24), 5825–5832 (1994). https://doi.org/10.1088/0953-4075/27/24/006 CrossRefGoogle Scholar
  162. 162.
    V.M. Shabaev, Relativistic recoil corrections to the atomic energy levels, in The Hydrogen Atom: Precision Physics of Simple Atomic Systems, ed. by S.G. Karshenboim, F. Bassani, F.S. Pavone, M. Inguscio, T.W. Hänsch. Lecture Notes in Physics, vol. 570 (Springer, Berlin, 2001), pp. 714–726. https://doi.org/10.1007/3-540-45395-4_51
  163. 163.
    V. Shabaev, Two-time Green’s function method in quantum electrodynamics of high-Z few-electron atoms. Phys. Rep. 356(3), 119–228 (2002). https://doi.org/10.1016/S0370-1573(01)00024-2 CrossRefzbMATHGoogle Scholar
  164. 164.
    V.M. Shabaev, Virial relations for the Dirac equation and their applications to calculations of hydrogen-like atoms, in Precision Physics of Simple Atomic Systems, ed. by S.G. Karshenboim, V.B. Smirnov. Lecture Notes in Physics, vol. 627 (Springer, Berlin, 2003), pp. 97–113. https://doi.org/10.1007/978-3-540-45059-7_6
  165. 165.
    V.M. Shabaev, Quantum electrodynamics of heavy ions and atoms: current status and prospects. Phys. Usp. 51(11), 1175–1180 (2008). https://doi.org/10.1070/PU2008v051n11ABEH006801 CrossRefGoogle Scholar
  166. 166.
    V.M. Shabaev, A.N. Artemyev, T. Beier, G. Plunien, V.A. Yerokhin, G. Soff, Recoil correction to the ground-state energy of hydrogenlike atoms. Phys. Rev. A 57, 4235–4239 (1998).  https://doi.org/10.1103/PhysRevA.57.4235 CrossRefGoogle Scholar
  167. 167.
    V.M. Shabaev, D.A. Glazov, N.S. Oreshkina, A.V. Volotka, G. Plunien, H.J. Kluge, W. Quint, g-factor of heavy ions: a new access to the fine structure constant. Phys. Rev. Lett. 96, 253002 (2006).  https://doi.org/10.1103/PhysRevLett.96.253002
  168. 168.
    A. Sommerfeld, Zur Quantentheorie der Spektrallinien I–II. Ann. Phys. 51(17), 1–94; 18, 125–167 (1916).  https://doi.org/10.1002/andp.19163561702
  169. 169.
    E. Suazo, S.K. Suslov, Soliton-like solutions for the nonlinear Schrödinger equation with variable quadratic Hamiltonians. J. Russ. Laser Res. 33(1), 63–83 (2012). https://doi.org/10.1007/s10946-012-9261-3 CrossRefGoogle Scholar
  170. 170.
    E. Suazo, S.K. Suslov, J.M. Vega-Guzmán, The Riccati differential equation and a diffusion-type equation. New York J. Math. 17 A, 225–244 (2011)Google Scholar
  171. 171.
    E. Suazo, S.K. Suslov, J.M. Vega-Guzmán, The Riccati system and a diffusion-type equation. MDPI-Mathematics 2(2), 96–118 (2014).  https://doi.org/10.3390/math2020096 zbMATHGoogle Scholar
  172. 172.
    S.K. Suslov, Matrix elements of Lorentz boosts and the orthogonality of Hahn polynomials on a contour. Sov. J. Nucl. Phys. 36(4), 621–622 (1982)MathSciNetzbMATHGoogle Scholar
  173. 173.
    S.K. Suslov, Hahn polynomials in the Coulomb problem (in Russian). Sov. J. Nucl. Phys. 40(1), 79–82 (1984).Google Scholar
  174. 174.
    S.K. Suslov, The theory of difference analogues of special functions of hypergeometric type. Russ. Math. Surv. 44(2), 227–278 (1989). https://doi.org/10.1070/RM1989v044n02ABEH002045 CrossRefMathSciNetzbMATHGoogle Scholar
  175. 175.
    S.K. Suslov, An Introduction to Basic Fourier Series. Developments in Mathematics, vol. 9 (Springer, Boston, 2003). https://doi.org/10.1007/978-1-4757-3731-8
  176. 176.
    S.K. Suslov, Expectation values in relativistic Coulomb problems. J. Phys. B Atom. Mol. Opt. Phys. 42(18), 185003 (2009). https://doi.org/10.1088/0953-4075/42/18/185003
  177. 177.
    S.K. Suslov, Dynamical invariants for variable quadratic Hamiltonians. Phys. Scr. 81(5), 055006 (2010). https://doi.org/10.1088/0031-8949/81/05/055006
  178. 178.
    S.K. Suslov, Mathematical structure of relativistic Coulomb integrals. Phys. Rev. A 81, 032110 (2010).  https://doi.org/10.1103/PhysRevA.81.032110 CrossRefGoogle Scholar
  179. 179.
    S.K. Suslov, Relativistic Kramers–Pasternack recurrence relations. J. Phys. B Atom. Mol. Opt. Phys. 43(7), 074006 (2010). https://doi.org/10.1088/0953-4075/43/7/074006
  180. 180.
    S.K. Suslov, On integrability of nonautonomous nonlinear Schrödinger equations. Proc. Am. Math. Soc. 140(9), 3067–3082 (2012). https://doi.org/10.1090/S0002-9939-2011-11176-6 CrossRefzbMATHGoogle Scholar
  181. 181.
    S.K. Suslov, An analogue of the Berry phase for simple harmonic oscillators. Phys. Scr. 87(3), 038118 (2013). https://doi.org/10.1088/0031-8949/87/03/038118
  182. 182.
    S.K. Suslov (2019). https://math.la.asu.edu/~suslov/curres/index.htm. See Mathematica notebooks: BerrySummary.nb, Fourier.nb and Heisenberg.nb
  183. 183.
    S.K. Suslov, B. Trey, The Hahn polynomials in the nonrelativistic and relativistic Coulomb problems. J. Math. Phys. 49(1), 012104 (2008). https://doi.org/10.1063/1.2830804
  184. 184.
    G. Szegő, Orthogonal Polynomials. American Mathematical Society: Colloquium Publication, vol. 23, 4th edn. (American Mathematical Society, Providence, 1975)Google Scholar
  185. 185.
    P.L. Tchebychef, Sur l’interpolation par la méthode des moindres carrés. Mémoires de l’Académie Impériale des sciences de St.-Pétersbourg, VIIe serie 1(15), 1–24 (1859). Also in Oeuvres I, pp. 473–498Google Scholar
  186. 186.
    P.L. Tchebychef, Sur l’interpolation des valeurs équidistantes, in Oeuvres, P.L. Chebyshev, A.A. Markov, N. Sonin, vol. I (Chelsea Publishing Company, Hartford, 1962), pp. 542–560. Reprint of the 1864 editionGoogle Scholar
  187. 187.
    P.L. Tchebychef, Sur l’interpolation des valeurs équidistantes, in Oeuvres, ed. by P.L. Chebyshev, A.A. Markov, N. Sonin, vol. II (Chelsea Publishing Company, New York, 1962), pp. 219–242. Reprint of the 1875 editionGoogle Scholar
  188. 188.
    J. Touchard, Nombres exponentiels et nombres de Bernoulli. Can. J. Math. 8, 305–320 (1956).  https://doi.org/10.4153/cjm-1956-034-1 CrossRefMathSciNetzbMATHGoogle Scholar
  189. 189.
    D.A. Varshalovich, A.N. Moskalev, V.K. Khersonskii, Quantum Theory of Angular Momentum (World Scientific, Singapore, 1988). https://doi.org/10.1142/0270 CrossRefGoogle Scholar
  190. 190.
    N.J. Vilenkin, Special Functions and the Theory of Group Representations. Translations of Mathematical Monographs, vol. 22 (American Mathematical Society, Providence, 1968). Translated from the Russian by V. N. SinghGoogle Scholar
  191. 191.
    L. Vinet, A. Zhedanov, Representations of the Schrödinger group and matrix orthogonal polynomials. J. Phys. A Math. Theor. 44(35), 355201 (2011). https://doi.org/10.1088/1751-8113/44/35/355201
  192. 192.
    E. Vrscay, H. Hamidian, Rayleigh-Schrödinger perturbation theory at large order for radial relativistic Hamiltonians using hypervirial Hellmann–Feynman theorems. Phys. Lett. A 130(3), 141–146 (1988). https://doi.org/10.1016/0375-9601(88)90417-3 CrossRefMathSciNetGoogle Scholar
  193. 193.
    G.N. Watson, A Treatise on the Theory of Bessel Functions. Cambridge Mathematical Library, vol. 2 (Cambridge University Press, Cambridge 1995)Google Scholar
  194. 194.
    S. Weinberg, The Quantum Theory of Fields: Volumes 1–3 (Cambridge University Press, Cambridge, 1998)Google Scholar
  195. 195.
    E.T. Whittaker, G.N. Watson, A Course of Modern Analysis: An Introduction to the General Theory of Infinite Processes and of Analytic Functions; with an Account of the Principal Transcendental Functions. Cambridge Mathematical Library (Cambridge University Press, Cambridge, 1950) [Reprint of the 4th (1927) edition]zbMATHGoogle Scholar
  196. 196.
    E.P. Wigner, The Application of Group Theory to the Special Functions of Mathematical Physics. Lectures During the Spring Term of 1955 (Princeton University Press, Princeton, 1955)Google Scholar
  197. 197.
    E.P. Wigner, Group Theory: And Its Application to the Quantum Mechanics of Atomic Spectra. Pure and Applied Physics, vol. 5 (Academic, New York, 1959). https://doi.org/10.1016/B978-0-12-750550-3.50003-3. Trans. from the German
  198. 198.
    J.A. Wilson, Hypergeometric series recurrence relations and some new orthogonal functions. Ph.D. thesis, The University of Wisconsin, Madison, 1978Google Scholar
  199. 199.
    J.A. Wilson, Orthogonal functions from Gram determinants. SIAM J. Math. Anal. 22(4), 1147–1155 (1991). https://doi.org/10.1137/0522074 CrossRefMathSciNetzbMATHGoogle Scholar
  200. 200.
    K.B. Wolf, On time-dependent quadratic quantum Hamiltonians. SIAM J. Appl. Math. 40(3), 419–431 (2005). https://doi.org/10.1137/0140035 CrossRefMathSciNetzbMATHGoogle Scholar
  201. 201.
    M.K.F. Wong, H.Y. Yeh, Exact solution of the Dirac-Coulomb equation and its application to bound-state problems. I external fields. Phys. Rev. A 27(5), 2300–2304 (1983).  https://doi.org/10.1103/PhysRevA.27.2300 Google Scholar
  202. 202.
    M. Wyman, L. Moser, On some polynomials of Touchard. Can. J. Math. 8, 321–322 (1956).  https://doi.org/10.4153/CJM-1956-035-9 CrossRefMathSciNetzbMATHGoogle Scholar
  203. 203.
    K.H. Yeon, K.K. Lee, C.I. Um, T.F. George, L.N. Pandey, Exact quantum theory of a time-dependent bound quadratic Hamiltonian system. Phys. Rev. A 48(4), 2716–2720 (1993).  https://doi.org/10.1103/PhysRevA.48.2716 CrossRefGoogle Scholar
  204. 204.
    V.A. Yerokhin, Z. Harman, Two-loop QED corrections with closed fermion loops for the bound-electron g factor. Phys. Rev. A 88(4), 042502 (2013).  https://doi.org/10.1103/PhysRevA.88.042502
  205. 205.
    J.Q. You, F. Nori, Atomic physics and quantum optics using superconducting circuits. Nature 474, 589–597 (2011).  https://doi.org/10.1038/nature10122 CrossRefGoogle Scholar
  206. 206.
    H.P. Yuen, Two-photon coherent states of the radiation field. Phys. Rev. A 13(6), 2226–2243 (1976).  https://doi.org/10.1103/PhysRevA.13.2226 CrossRefMathSciNetGoogle Scholar
  207. 207.
    A.V. Zhukov, Exact quantum theory of a time-dependent system with quadratic Hamiltonian. Phys. Lett. A 256(5), 325–328 (1999). https://doi.org/10.1016/S0375-9601(99)00247-9 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Arizona State UniversityTempeUSA
  2. 2.Lamar UniversityBeaumontUSA
  3. 3.Applied Mathematics and StatisticsStony Brook UniversityStony BrookUSA

Personalised recommendations