Advertisement

Shielding and Shadowing: A Tale of Two Strategies for Opinion Control in the Voting Dynamics

  • Guillermo Romero MorenoEmail author
  • Long Tran-Thanh
  • Markus Brede
Conference paper
Part of the Studies in Computational Intelligence book series (SCI, volume 881)

Abstract

This paper focuses on influence maximization or opinion control in the voting dynamics on social networks. We show two simple heuristics that are effective strategies to enhance vote shares: (i) avoiding the nodes controlled by your opponent when having a lower budget while focusing on them when having a larger budget (shadowing) and (ii) ring-fencing her influence by targeting control on adjacent nodes (shielding). The paper presents an empirical numerical evaluation of these strategies for various classes of complex networks which is backed up by analytical results obtained via a mean-field approach, in good agreement with numerical results. Importantly, we also show that optimal influence allocations tend to not be localized, but can include targeting nodes significant distances away from opposing influence.

Keywords

Complex networks Voter dynamics Opinion control Influence maximization 

References

  1. 1.
    Alshamsi, A., Pinheiro, F.L., Hidalgo, C.A.: Optimal diversification strategies in the networks of related products and of related research areas. Nat. Commun. 9(1), 1328 (2018).  https://doi.org/10.1038/s41467-018-03740-9CrossRefGoogle Scholar
  2. 2.
    Arendt, D.L., Blaha, L.M.: Opinions, influence, and zealotry: a computational study on stubbornness. Comput. Math. Organ. Theory 21, 184 (2015)CrossRefGoogle Scholar
  3. 3.
    Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999).  https://doi.org/10.1126/science.286.5439.509MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Beckett, L.: Trump digital director says facebook helped win the white house (2017). https://www.theguardian.com/technology/2017/oct/08/trump-digital-director-brad-parscale-facebook-advertising
  5. 5.
    Braha, D., de Aguiar, M.A.M.: Voting contagion: modeling and analysis of a century of U.S. presidential elections. PLoS ONE 12(5), e0177970 (2017)CrossRefGoogle Scholar
  6. 6.
    Brede, M.: How does active participation effect consensus: adaptive network model of opinion dynamics and influence maximizing rewiring. Complexity 2019, 1486909 (2019)CrossRefGoogle Scholar
  7. 7.
    Brede, M., Restocchi, V., Stein, S.: Resisting influence: how the strength of predispositions to resist control can change strategies for optimal opinion control in the voter model. Front. Robot. AI 5, 34 (2018)CrossRefGoogle Scholar
  8. 8.
    Brede, M., Restocchi, V., Stein, S.: Effects of time horizons on influence maximization in the voter dynamics. J. Complex Networks 7(3), 445–468 (2019). https://academic.oup.com/comnet/article/7/3/445/5149693MathSciNetCrossRefGoogle Scholar
  9. 9.
    Brede, M., Restocchi, V., Stein, S.: Transmission errors and influence maximization in the voter model. J. Stat. Mech. Theory Exp. 2019(3), 033401 (2019)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Castellano, C., Fortunato, S., Loreto, V.: Statistical physics of social dynamics. Rev. Mod. Phys. 81(2), 591–646 (2009)CrossRefGoogle Scholar
  11. 11.
    Clifford, P., Sudbury, A.: A model for spatial conflict. Biometrika 60(3), 581–588 (1973)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Deffuant, G., Neau, D., Amblard, F., Weisbuch, G.: Mixing beliefs among interacting agents. Adv. Complex Syst. 3, 87–89 (2000)CrossRefGoogle Scholar
  13. 13.
    DeGroot, M.: Reaching a consensus. J. Am. Stat. Assoc. 69, 118–121 (1974)CrossRefGoogle Scholar
  14. 14.
    Galam, S.: Minority opinion spreading in random geometry. Eur. Phys. J. B 25, 403 (2002)Google Scholar
  15. 15.
    Galam, S., Gefen, Y., Shapir, Y.: Sociophysics: a new approach of sociological collective behaviour. i. mean-behaviour description of a strike. J. Math. Sociol. 9, 1–13 (1982)CrossRefGoogle Scholar
  16. 16.
    Galam, S., Javarone, M.A.: Modelling radicalization phenomena in heterogeneous populations. PLoS ONE 11, e0155407 (2016)CrossRefGoogle Scholar
  17. 17.
    Galam, S.: Stubbornness as an unfortunate key to win a public debate: an illustration from sociophysics. Mind Soc. 15(1), 117–130 (2016)CrossRefGoogle Scholar
  18. 18.
    Goldenberg, J., Libai, B., Muller, E.: Talk of the network: a complex systems look at the underlying process of word-of-mouth. Mark. Lett. 12(3), 211–223 (2001)CrossRefGoogle Scholar
  19. 19.
    Hegselmann, R., König, S., Kurz, S., Niemann, C., Rambau, J.: Optimal opinion control: the campaign problem. J. Artif. Soc. Soc. Simul. 18 (2015)Google Scholar
  20. 20.
    Holley, R.A., Liggett, T.M.: Ergodic theorems for weakly interacting infinite systems and the voter model. Ann. Probab. 3(4), 643–663 (1975)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Javarone, M.A.: Network strategies in election campaigns. J. Stat. Mech. 2014, P08013 (2014)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the spread of influence through a social network. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2003, pp. 137–146. ACM, New York (2003).  https://doi.org/10.1145/956750.956769
  23. 23.
    Kuhlman, C.J., Kumar, V.A., Ravi, S.: Controlling opinion propagation in online networks. Comput. Netw. 57(10), 2121–2132 (2013)CrossRefGoogle Scholar
  24. 24.
    Laciana, C.E., Rovere, S.L.: Ising-like agent-based technology diffusion model: adoption patterns versus seeding strategies. Physica A 390, 1139 (2011)CrossRefGoogle Scholar
  25. 25.
    Lallouache, M., Chakrabarti, A.S., Chakraborti, A., Chakrabarti, B.K.: Opinion formation in kinetic exchange models: spontaneous symmetry-breaking transition. Phys. Rev. E 82, 056112 (2010)CrossRefGoogle Scholar
  26. 26.
    Liu, S., Shakkottai, S.: Influence maximization in social networks: an ising-model-based approach. In: Proceedings of of the 48th Annual Allerton Conference, p. 570 (2010)Google Scholar
  27. 27.
    Liu, Y.Y., Slotine, J.J., Barabási, A.L.: Controllability of complex networks. Nature 473(7346), 167–173 (2011)CrossRefGoogle Scholar
  28. 28.
    Lynn, C.W., Lee, D.D.: Maximizing influence in an ising network: a mean-field optimal solution. In: Proceedings of the 30th International Conference on Neural Information Processing Systems, NIPS 2016, pp. 2495–2503 (2016)Google Scholar
  29. 29.
    Masuda, N.: Opinion control in complex networks. New J. Phys. 17, 1–11 (2015)MathSciNetCrossRefGoogle Scholar
  30. 30.
    McFaul, M., Kass, B.: Understanding Putin’s Intentions and Actions in the 2016 U.S. Presidential Election. Technical report, Standford University, June 2019Google Scholar
  31. 31.
    Mobilia, M.: Does a single zealot affect an infinite group of voters? Phys. Rev. Lett. 91, 028701 (2003)CrossRefGoogle Scholar
  32. 32.
    Mobilia, M., Petersen, A., Redner, S.: On the role of zealotry in the voter model. J. Stat. Mech. Theory Exp. 2007(08), P08029–P08029 (2007)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Morone, F., Makse, H.A.: Influence maximization in complex networks through optimal percolation. Nature 524, 65 (2015)CrossRefGoogle Scholar
  34. 34.
    Porfiri, M., di Bernardo, M.: Criteria for global pinning-controllability of complex networks. Automatica 44(12), 3100–3106 (2008)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Ramos, M., Shao, J., Reis, S.D.S., Anteneodo, C., Andrade, J.S., Havlin, S., Makse, H.A.: How does public opinion become extreme? Sci. Rep. 5, 10032 (2015)CrossRefGoogle Scholar
  36. 36.
    Romero Moreno, G., Tran-Thanh, L., Brede, M.: Continuous influence maximisation for the voter dynamics: Analytical solution for leader-follower networks and gradient ascent algorithm. Manuscript submitted for publication (2019)Google Scholar
  37. 37.
    Sen, P.: Phase transitions in a two-parameter model of opinion dynamics with random kinetic exchanges. Phys. Rev. E 83, 016108 (2011)CrossRefGoogle Scholar
  38. 38.
    Sîrbu, A., Loreto, V., Servedio, V.D.P., Tria, F.: Opinion Dynamics: Models, Extensions and External Effects, pp. 363–401. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-25658-0_17Google Scholar
  39. 39.
    Sznajd-Weron, K., Sznajd, J.: Opinion evolution in closed community. Int. J. Mod. Phys. C 11, 1157–1165 (2000)CrossRefGoogle Scholar
  40. 40.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440–442 (1998). http://www.nature.com/articles/30918CrossRefGoogle Scholar
  41. 41.
    Yadav, A., Wilder, B., Rice, E., Petering, R., Craddock, J., Yoshioka-Maxwell, A., Hemler, M., Onasch-Vera, L., Tambe, M., Woo, D.: Influence maximization in the field: The arduous journey from emerging to deployed application. In: Proceedings of the International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS (2017)Google Scholar
  42. 42.
    Yildiz, E., Ozdaglar, A., Acemoglu, D., Saberi, A., Scaglione, A.: Binary opinion dynamics with stubborn agents. ACM Trans. Econ. Comput. 1(4), 1–30 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Guillermo Romero Moreno
    • 1
    Email author
  • Long Tran-Thanh
    • 1
  • Markus Brede
    • 1
  1. 1.School of Electronics and Computer ScienceUniversity of SouthamptonSouthamptonUK

Personalised recommendations